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Preface 

THIS BOOK is designed for students who have had a course in ele¬ 
mentary calculus covering the work of three or four semesters. 

However, it is arranged in such a way that it may also be used to advan¬ 
tage by students with somewhat less preparation* The reader is 
expected to have considerable skill in the manipulations of elementary 
calculus, but it is not assumed that he‘ will be very familiar with the 
theoretic side of the subject. Consequently, the book emphasizes first 
the type of manipulative problem the student has been accustomed to 
and gradually changes to more theoretic problems. In fact, the same 
sort of crescendo appears within the chapters themselves. In certain 
cases a fundamental theorem, whose meaning is easily understood, is 
stated and used at the beginning of a chapter; its proof is deferred to the 

end of it. 
Believing that clarity of exposition depends largely on precision of 

statement, the author has taken pains to state exactly what is to be 
proved in every case. Each section consists of definitions, theorems, 
proofs, examples, and exercises. An effort has been made to make the 
statement of each theorem so concise that the student can see at a glance 
the essential hypotheses and conclusions. 

Three of the chapters involve the Stieltjes integral and the Laplace 
transform, topics which do not appear in the traditional course in 
advanced calculus. The author believes that these subjects have now7 

reached the stage where a knowledge of them must be part of the equip¬ 
ment of every serious student of pure or applied mathematics. 

The book may be used as a text in various ways. Certainly, the 
usual college course of two semesters cannot include so much material. 
The author's own procedure in his classes has been to present all of any 
chapter used but to offer different chapters in different years. Another 
method, which might be particularly useful for the engineering student 
or for the prospective applied mathematician, would be to use the first 
two thirds of each chapter. The final third could then be used for 
reference purposes. It should be observed that the separate chapters 
are more or less independent. Subject to the fact that the latter half of 
the book is more difficult than the first, the order of presentation may 
be greatly varied. For example, Chapter IV might follow Chapter I, or 
indeed the material from both might be judiciously combined. The 
instructor would then have to supply some of the elementary material 
about tangent planes to surfaces. A suggested shorter course could be 
based on suitable portions of Chapters I, IV, VI, VII, VIII, IX, X, XII. 

ill 

D. V. W. 
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CHAPTER I 

Partial Differentiation 

§1* Introduction 

We shall be dealing in this chapter with real functions of several real 
variables, such as u — f(x7 y)7 u — f(xt y, z), etc. In these examples the 
variables xt y, z, . . . are called the independent variables or arguments 

of the function, u is the depetideni variable or the value of the function. 
Unless otherwise stated, functions will be assumed single-valued; that is, 
the value is uniquely determined by the arguments. Multiple-valued 
functions may be studied as combinations of single-valued ones. For 
example, the equation 

(1) u1 + x% + yt = a3 

defines two single-valued functions, 

(2) u = \/a- ~ x- - y* 

(3) u = — vV — x* — y- x% + y1 £ a4. 
• 

A function of two variables clearly represents a surface in the space of 
the rectangular coordinates xt yt u. In the study of functions of more 
than two variables, geometrical language is often retained for purposes of 
analogy, even though geometric intuition then fails, 

1.1 Partial derivatives 

A partial derivative of a function of several variables is the ordinary 
derivative with respect to one of the variables when all the rest are held 
constant. Various notations are used. The partial derivatives of 
« = fix, Vf z) are 

du 

dx 

du 

dy 

= fi(x, V,«) = - 5 A*, y> ■) 

= /*(*» y, 2) 

du 

dz 
= fs(x, y, z). 

An important advantage of the subscript notation is that it indicates 
an operation on the function that is independent of the particular 
letters employed for the arguments. Thus, if f(x, y, z) = xzv, we have 

1 

j V»lGAN 
PUBLIC 



2 PARTIAL DIFFERENTIATION [Ch, I §1,2 

M%> yt z) = xz* log z 
Mr* st t) — rf log U 

It shares this advantage with the familiar f(x) for the derivative of 
a function of one variable. The notations for the value of a derivative 
at a point are illustrated by 

0U 

% 
= dl 

x — xt* V ™ 1/t* s ™ rs dy (to, Vo, ro) 
~ MX<h VOt 

For example, 

/a(*o, Vn, 20) = y9 z0) 

Example A. f(x, y) — x** 

^ = z**{y log x + y)s ^ = xx*+l log x. 

Example B. f(xt yt z) = % sin (yz) 
Ma, 1, x) = -a. 

1.2 Implicit functions 

The example of §1 serves to illustrate how a function may be defined 
implicit!y. Thus, equation (1) defines the two functions (2) and (3), 
which are said to be defined implicitly by (1) or explicitly by (2) and (3), 
In other cases, a function may be defined implicitly even though it is 
impossible to give it explicit form. For example, the equation 

# 
(4) u + log u = xy 

defines one single-valued function u of x and y. Given any real values 
of the arguments, the equation could be solved by approximation methods 
for u. Yet u cannot be given in terms of x and y by use of a finite number 
of the elementary functions. 

The partial derivatives of a function defined implicitly may be 
obtained without using an explicit expression for the function. One 
has only to differentiate both sides of the defining equation with respect 
to the independent variable in question, remembering that the dependent 
variable is really a function of the independent ones. For example, 
differentiating equation (1) gives 

dll 
— n du _ X 

dx 
= u 

dx ~ u 
du 

= 0 
du _ 

~~ 
_ v_. 

ty u 

These results can be checked directly by use of equation (2) or of equation 
(3). From equation (4) we would have 

Ch. I §1.31 PARTIAL DIFFERENTIATION 3 

du uy du _ ux 
dx ~ u + 1 dy w+l 

The method applies equally well if several functions are defined by 

simultaneous equations. 

„ f V + log U ‘ 
Example C. J u + log u , 

f 1 du eto 
u dx dx 
1 dv . du 

\ V dx dx 

du tr u 
! _ u(y — d) 

dx L u I — uv 
V 1 

xy 
x — 

One could also solve for ^ - To obtain the derivatives 
ox 

with respect to y, one has only to differentiate the 
defining equations with respect to that variable. 

1.3 Higher order derivatives 

Partial derivatives of higher order are obtained by successive applica¬ 
tion of the operation of differentiation defined above. The notations 
employed will be sufficiently illustrated by the following examples. 

If « = fix, y, z), 

d*u 
Bxdy 

dhi 

dz-dy 

dAu 
dxdydza 

— \ 
dx} (s) 

= /«(*» y, ®) 

It 
dz' 

f dht \ 
\dzdy) 

= /«**(*, y, z) 

A ( 3*u \ 
| = fiuzix, y, z). 

fix1 [dydzA 

A function of two variables has two derivatives of order one, four 
of order two and 2" of order n. A function of tn independent variables 
will have »" derivatives of order ?j. Later wc shall sec that many of 
the derivatives of a given order will be equal under very general condi¬ 
tions. In fact, the number of distinct derivatives of order n is the same 
as the number of terms in a homogeneous polynomial in ?n variables of 

degree n: 

(n + m — l\ _ (n + m — 1)1 
\ n ) nt(m — 1)1 

■Rxample D. « = log (xa + y) 
d*u _ d3tt _ 3att = 

dy2dx dxdy'2 dydxdy {x- + yY 
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Example E. u + log u = xy 
Bu uy 
dx u + 1 

d2ii u y Bu 
Bydx u + 1 ' (u + 1)- By 

u t xyu dht 
U + 1 ^ (i* + l}3 BxBy 

EXERCISES (1) 

1. If S(xf y) - a: tan~* (x* + y), find/Kl, 0), f2(xt y). 

% If f(xt y,z) = x log y* + ye% find/^l,-!, 0), f*(xf xy, y + z). 

n Tf u* c i Bu By Bit 3. If u = x*, find — * — - 
Bx By Bz 

4, If u = xu + ft*, find ~j ~ 
dx w 

5* If 
u2 + x2 + y2 = 3 

?* — p3 + 3x = 4, 

, du du Bv Bv 
nnd — t -r-> x-j —* 

dx By Bx By 

6, If u ^ xuf show that 

Bht Bhi 
Bx?dy Bxdydx 

7. Prove the statement in the text about the number of terms in a 
homogeneous polynomial 

§2. Functions of One Variable 

We recall here certain notions about functions of one variable, which 
the student is assumed to have met before, perhaps in a less precise 
form. We shall also introduce certain abbreviating notations, which 
will facilitate the statement of theorems. 

2,1 Limits and continuity 

A function f(x) approaches a limit A as x approaches a if, and only if, 
for each positive number e there is another, 8} such that whenever 
0 < |x - a| < 8 we have |/(x) - A\ < e. That is, when x is near a 
(within a distance 5 from it), f(x) is near A (within a distance e from it). 
In symbols we write 

lim /(x) = A. 
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Example A. 

PARTIAL DIFFERENTIATION 5 

lim y/x — 1. 
ZH“*1 

For, in this example, we may choose 5 equal to the 
given €. We have 

I/(*) - A\ = |V* - 1| = 1 ' 0 < * < 2. 
+ I 

IfO<[a-l|<*« €> we obtain 

\s/x — 1| < 
Vx + 1 

< e. 

Example B. f(x) = sin (1/x) x ^ 0. 
Here fix) has no limit as x approaches zero. Since 
f(x) takes on the values — 1 and +1 infinitely often 
in every neighborhood of the origin, it is certainly not 
within a distance less than i from any number through¬ 
out any neighborhood of the origin. 

If, in the definition of limit, the first inequalities are replaced by 
0<x — a<8(0<a — x< 5), we say that - A as X approaches 
a from above (below) and write 

lim f(x) = A 
X—*a+ 

(lim f(x) = A). 

Example C. m - 
% 

x ^ 0 
1 + ev* 

Ibn f(x) — 1, lim /(x) = 0. 
x—*0— 

If, in the definition, the last inequality is replaced by 0 < f(x) — A < e 
(0 < A — f{x) < e), we say that fix) approaches its limit from above 

(below) and write 

lim/(x) — A+ (Um f(x) = A—)* 

In Example C, we could have written more precisely 

lim fix) = 1 — , 
x—*0 — 

lim f(x) — 0 + . 

It is now easy to formulate what is meant by a continuous function. 
Let us first introduce the following symbols: 

t —“belongs to” or “is a member of.” 
-^ —“implies.” 

—“implies and is implied by” or “if, and only if.” 
C —-“the class of continuous functions.” 

I —“not.” 
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Definition 1. f (x) c C atx — a 

This may be read, “f(x) belongs to the class of functions continuous at 
x = a” {or “f(x) is continuous at x = a”) "if, and only if, the limit of 
fix) is /(a) as x approaches a.” 

In Example A, the function Vr is continuous at a: = 1, since = 1. 
Observe that the last equality in Definition 1 is equivalent to 

Em fix) = /{lim x). 

For a function to be continuous at x = a, it certainly must be defined 
there. Thus, f{x) = (sin x)/x is not continuous at x = 0 in the first 
instance, since division by zero is undefined. However, if/(0) is defined 
as 1, fix) becomes continuous at x = 0. In Example B, fix) is dis¬ 
continuous at x = 0 on two counts: /(0) is undefined, and the limit 
involved does not exist. No ,choice of definition for /(0) could make 
fix) continuous at x = 0. 

If in Definition 1 “x-*a” is replaced by “x-*a+” i“x—>a— ”), 
fix) is said to be continuous on the right (left) at x = a. Thus, in 
Example C, fix) is continuous on the right at x = 0 if /(0) - 0. We 
say that 

/(*) * C, a <x <b, 4—► fix) e C 

at each x of the interval a < x < b. Further, fix) e C, a £ x £ b t—> 
f(x) e C, a < x < b, and 

lim fix) = fia), lim fix) = fib). 

In Example C, with /(0) = 0, fix) eC 0 g ft g I. 

Example D. fix) = -- x ^ 0 
X 

f{x) jtC — l < x < 1. 

2.2 Derivatives 

We now introduce further classes of functions, those which have 
derivatives of certain orders. 

Definition 2. fia) 

/+(«) 

4(a) 

These three numbers are called respectively the derivative, the 
derivative on the right, and the derivative on the left of f{x) at x = a. 
For example, if f{x) = \x\, then /'(0) does not exist, but f+(0) = 1 and 
f_(0) = -1. Distinguish between f+(a) and f'ia+). 

= /fa + Ax) -m 

aj-^o Ax 

. On ■B- + *0 -m 

Ar—0+ Ax 
= ]im /(g + Ax) - fia) 

Ap—►o*** Ax 
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Example E. fix) = x5 sin (1/a:) x ^ 0 
m = 0 

4(0) = lim Ax sin {\/Ax) = 0 

f'(0+) = lim [2x sin (1/a:) — cos (1/2)1- 

The latter limit clearly does not exist. 

Higher derivatives are defined in the obvious way by successive 

application of Definition 2. 
Definition 3. /(x)eC“ i—1 /<B)(3)eC n = 1, 2, • • ■ . 
It is easy to see that when /' (a;) exists then fix) e C. Hence, i f fix) t O, 

we also have /(*) e Ck for k = 0, 1, 2, . . . , n - 1 (CB = C). 

fix) = 0 x < 0 

fix) = X i£0 i < x < i 

fix) = 0 x < 0 

fix) = X5 /WtC',/W4’ —i < * < l. 

These examples show how to construct a function fix) eC" for which 
fix) £ C'n+1. Note the difference between Example E and the first case 
under Example F. These two functions fail to belong to C1 for different 
reasons. The first has a derivative at every point but this derivative is 
not continuous at x = 0, the second has no derivative at x — 0. This 
suggests that it would be profitable to define a class of functions 
“between” C and C*. This is, in fact, the case. In the interests of 
simplicity, we shall not do so. We thereby sacrifice a slight degree of 

generality in some of our theorems. 

2.3. Rolle’s theorem 

Theorem 1 (Rolle). 1. fix) e C1 a^x & b 
2. f{a) = fib) = 0 

_► /'(£) = 0 for some £, a < £ < b. 

Case I. f{x) s 0. Then fix) = 0 for all x. 
Case II. /(a:) / 0. Then there is a number c, a < e < b, where 

/(c) ^ 0. If /(c) > 0 (< 0), then/Or) has a maximum* (minimum) at a 

point £, a < £ < b. Hence, 

fit + A.t) - fit) 
Ax 

/a + ax) - m 

Ax 

g o (fe 0) £ < £ + Ax < b 

fe 0 (5 0) a < £ -J- Ax < £ 

__* 
* This fact is obvious geometrically. A proof by use of Definition 1 alone will be 

found following Theorem 7 of Chapter V. 1 
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Allowing Ax to approach zero, we see by hypothesis 1 that both quotients 
approach /'{£), which must therefore be nonnegative and non positive. 
Hence /'(£) — 0, Observe that the mere existence of/'(x) at £, and not 
its continuity there, is what was needed, so that a more general theorem 
can easily be stated, 

2.4 Law of the mean 

Theorem 2 (Law of the mean). 1. f(x) eC1 a g x £ b 

-> f(b) — f{o) = /'(€)(& — a) for &ome £, a < { < ft. 

The function 

viz) = Kx) - m - mb zfa(a) c* - o) 

satisfies aU hypotheses of Theorem 1- The conclusion /{£) = 0 loads 
at once to the desired result. 
One can easily see the origin of 
the function ^(x) by observing 
that it gives the length of the 
line segment A B in Figure 1. 

If we set a — c, b — c + h 
or if we set b = c> a = a + h 
(h < 0), the law becomes in 
either case 

f(c + h) ’/(c) - hf'(c+0h) 
0 < 0 < 1. 

Example G. 

Example II. 

fix) = xa, a = 1, b = 2, £ = VTA 1 < Wz < 2 
c = 2, h - ’1, 6 = 2 — VT/Z, 0 < 2 - VW < L 

f(x) = sin x, a ^ tt} 0 < h < w/2 
sin (w + h) — sin (x + k) — sin it = h cos (ir + Oh) 

—k < — sin h < — h cos h 
. . tan A _ , 
1 < —?—- < sec h 

tan h i 
lim —r— = 1. 

0 < 0 < 1 

EXERCISES (2) 
1* Find £ in Rollers theorem for/(x) — x3(l — x)5, and show that it 

lies in the required interval. 

2, Find 0 in the law of the mean for/(x) = Ax2 + Bx + C, and show 
that 0 < 0 < 1. 
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3. Formulate exact definitions for the following: 

lim fix) = A 
£—►•+■ « 

lim f{x) — A 
x—*■— ® 

lim f(x) — + go. 

4, Construct f(x) such that /(x) e C*, f(x) £ O1-1. 

6. Restate Theorem 2 more generally in such a way that only those 

hypotheses are stated that are needed in the proof. 

6. Prove by the method employed for Example Ii that 

* a tan h , 
lim ——- — L 

7. Prove from the definition of limit that a function cannot have two 
different limits as its independent variable approaches a limit. 

§3. Functions of Several Variables 

We now proceed with a systematic treatment of partial differentiation. 
We develop first the method of differentiating composite^ functions 

analogous to 

lf(g(x))Y = fisfaMix) 
du _ dudy 
dx ” dy dx 

for functions of one variable. 

3.1 Limits and continuity 

We begin by defining the limit of a function of two variables. A 
fimction/(x, y) approaches a limit A as x approaches a and y approaches 6, 

lira/(x, y) — As 

y-+b 

if, and only if, for each positive number * there is another, 3, such that 
whenever |x — a\ < &, \y — b\ < 3, 0 < (x — a)2 + (y — b)2 we have 
]/(:r, y) — A\ <e. That is, when (x, y) is at any point inside a certain 
square with center at (a, b) and width 23 (except at the center) /(xt y) 
differs from A by at most e. 

Example A. / (x, y) — x2 + y2 
Given €, we may choose 3 — \/e/2. For, the 
inequalities |x| < *\/7/2r |^| < VV2 imply 
(x2 + y2) < e. Hence, 

Urn (x2 + y2) = 0. 

i/— 
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Example B. If f(x, y) = - x —y 
% ~r y 

fix, y) = 1 * = -y, 
then fix, y) approaches no limit as (a:, y) approaches 
the origin. For,/(x, y) is as large as we like at points 
near the line x = — y. On the other hand, observe 
that 

lim [lim /(*, y)] = 1 
x—*0 

lim [lim/(x, y)] = —I. 
y-*0 x—+0 

Definition 4. fix, y) t C at (a, b) <—*■ limfix, y) = f{a, b). 
%-*a 

Any collection of points (x, y) is called a point set. The set of points 
\x — a\ < 6, \y - 6] < 5 is known as an open square or two-dimensional 
interval or a 8-neighborhood of the point (a, b). A point (a, b) is a limit 
point of a set S if every ^-neighborhood of (a, 6) contains points of 5. 
A set S is closed if it contains all its limit points. A point is an interior 
point of S if it is the centre of a 5-neighborhood composed entirely of 
points of 8. A set is open if it is composed entirely of interior points. 
For example, if S is the set of points (x, y) for which x- + y2 < a2, S is 
open. Limit points of this set not in it are those for which x* + y2 = a2. 
The boundary of a set is the set of all limit points not interior points. 

A domain is an open set, any two of whose points ean be joined by a 
polygonal line all of whose points belong to the set. A region is cither 
a domain or a domain pins some or all of its boundary. If it contains all 
of its boundary, it. is a closed region. 

We say that fix, y) e C in a domain D if, and only if, f(x, y) E C at 
each point of D. Also f(x, y) e C at a boundary point (a, b) of a region 
R where/(x, y) is defined if, and only if, 

lim f{x, y) = f{a, b) (x, y) e R. 
x—*a 

v-*k 

That is, the point (x, y) approaches (o, b) only through points of R. This 
corresponds to one-sided approach for functions of one variable. Then 
fix, y) e C in R if fix, y) t C at each point of R. 

3.2 Derivatives 

We now define the classes C” for functions of several variables. We 
first give limit definitions of the partial derivatives described in §]. 
We use the letter R. to indicate a region. 
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Definition 5. Ma, b) = 

hia, b) = 

W>) 

M) 
Definition 6- 

f(x, y) ?Cn in R dX 
dzn* 

jira /(a + Ax, b) — fja, t>) 
is_.o Ax 
Iim /(a, i> + Ay) - /(q, b) 

ijr—>0 Ay 

ay 
dxn~ldy> 

d’f 
dy* 

t C in R. 

It can be shown that if fix, y) satisfies the condition of this definition, 
then fix, y)tCkik = 0, 1, 2, • • * , n — 1), just as for functions of a 
single variable. 

3,3 A basic mean-value theorem 

We are now able to establish a result of fundamental importance in 
the theory of partial differentiation. It may be considered analogous 
to Theorem 2, the law of the mean for functions of a single variable. 
We shall use the letter D to indicate a domain. 

Theorem 3. 1. fix, y)tCi in D 
2. (he circle (x — o)! -j- (y — i>)2 5- lies in D 
fia + Ax, b -b Ay) - f(a, b) = 

fi(a + OjAz, b)Ax +/j(o + Ax, b + B<^y)Ay, 
where Ax2 + Ay2 < 5s and 0 < Si < 1, 0 <* 9s < 1. 

• 

Af = /{a + Ax, b + Ay) - f(at b), 

and rewrite it as follows 

Af = \f(a + Ax, b) - /(a, 6)] + [/(a + Ax, b + A7j) - f{a + Ax, ft)]. 

rierc we have added and subtracted f(a + Ax, 6) on the right-hand side 
of equation (1), Now apply Theorem 2 to the function /(xt b) of the 
single variable x, Its derivative is/b). 
We thus obtain for the first bracket 
above 

f(a + Ax, b) —f(a, b) = fx{a + 0i Ax, b)Ax 
0 < < L 

Next apply the same theorem to the func¬ 
tion f(a + Ax, y). Wo thus obtain 

(2) Af - Ma + B^Ax, b)Ax + Ma + 
Ax, b + 02Ay)Ay 0 < 02 < L Fig, 2. 

There is no reason to suppose that 0i = $2, and in general these two 

numbers will be different, A more symmetric form of the law of the 

mean, a form involving a single 0, will appear in §9, equation (4). 
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£%£Tzxi 2+ a“, 2 e^ti8 
(2) might not be true. A glance at Figure 2 will show why. 

Example C. /(x, y) = a* + y* + ^ 

(a, 6) = (1, 2) 
/(l + Ax, 2 + Ay) - /(1, 2) = 

5Ax + 4Az2 + 4Ay -f A y2 + Aar* = 

g(l + SiAx) + 3(1 + 0iAz)2]A;r + [4 + 20,Ay]Ay. 

We can determine for this particular example the 
exact values of 0j and 6?} 

e1 = _ ~4 -j- %/lQ -(- 12A* + 3Ax2 . I 
_3Az ’ 02 ~ 2 

3.4 Composite functions 

.. ye Use tfle Theorem 3 to differentiate a function of fUnc- 
ons, one case of which is stated in the following theorem. 

Theorem 4. 1. /(x, y), g(r, s), h(r, s) E C1 

(3) 

(4) 

firf(9i H h){h(r, s) f«(g, h)h\(r} s) 

Q-sn.g, h) = f.ig, h)g2(r, s) + ffa h)ht(r, s). 

The regions in which the given function c C1 are not stated in thn 

interests ofmmphdty It is understood, of course, that the region for 

£w£m in M rtt'o'flmUS‘ 1,6 8“Ch ““ ,he »■ *« >=» 

Kg(r, s), h(r, s)). 

From the definition of a partial derivative, we have 

91 
dr 

4f 
r, =VlmT J C^piis) Ar-iO nr 

' - f(9(r0 + Ar, So), h(r0 + Ar, Sa)) - f(g{ro> ^ ^ ^ 

Now apply Theorem 3, setting 

g(?o T' Ar, -p Ar, 

A(ra + Ar, s0) = y0 + Ay, 
x° = g(r0, s0), 
Vo = k(r0l s0). 

WeUve°ntiriUity °f 9 aDd k’ WG 806 that and Ay tend to Ar. 

Ar T OiAx, yo) + f2(x0 + Ar, y0 -j- e2Ay) ~ 
Ar id o < eh e2 < i. 
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Now let Ar approach zero and make use of Definition 5 and Definition 6 

to obtain 

= fi(xa, yo)j7i(r0, s0) + M&0, S/«jAiO*o, S0). 

Replacing x(l, ya by their values and dropping subscripts, we have equa¬ 
tion (3). Equation (4) is obtained in a similar way. The results are 
easily remembered by putting them in the following form, analogous 

to the second equation of this section: 

df _ df dx df dy 
dr dx dr dy dr 

df = 9L 9E +i 9&. 
ds dx ds dy ds 

Example D. f{x, y) = xy ft = y, fz = x 

•^.gh - ^.f(g(r, «), Hr, *)) = V9x + xH = hgi + gh i. 

Thus, the rule for differentiation of a product is the 
same whether the factors are functions of one or of two 
variables, a fact which is also evident from the defini¬ 
tion of a partial derivative. 

91 
dr 

3.5 Further cases 

The following cases are proved in a manner quite analogous to 
that used for the proof of Theorem 4: 

Case I. u = f(x, y, s), X = g(r, s), y = h(r, s), z = k(r, s) 
du _ dudx du dy du dz. 
dr dx dr dy dr dz dr' 

Case II. u — f(x), x = <p(r> s> 0 

rs =iI"Wr’Si0Wr*Sr 0; 
Case III. u = f(x, y, z), x = <p(t), y 

du dudx du dy . du dz 
m, ^ 

au ouax . ouay . auaz , , . , ,, , , , 
To = M + 57, 7u + 57 77 = h* + W +/•“ • 

To prove these and analogous results, one must use Theorem 3 and 
suitable modifications thereof (Theorem 2 or Exercise 3 of the present 
section). Distinguish carefully between total and partial derivatives. 

Example D. u = sin {if + y) x = f(t), y = g(t) 

^ - [cos (e* + y)]eif(t) + [cos + y)]g'(t). 

Example E. u = f(x} y)fx - g(r, s),y — s), r - ^(0, s — t) 
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EXERCISES (3) 

1. Find the numbers Si and h of Theorem 3, if 

f(x> V) — *s + 3ay + y* i, a = b = 0, Ax = 1, Ay = —1, 

2. Define a function f(x, y), belonging to C but not to C\ 

3. Prove a theorem analogous to Theorem 3 for a function of three 
variables. 

4. Prove Case J. 

5. Prove Case IX. 

6. Prove Case III. 

7. If 

u = fix, y), « = g{r, s), y = h(t)k(r), 

~ . du du du 
find — > — 

dr ds dt 

8. If u = f(x, y), x = r cos 0, y = r sin $, show that 

Explain the exact meaning of the equation, dissolving the mystery of a 
function of (x, y) equated to a function of (r, 6). 

10. | log f(y, g(x, y)) = ? 

11. In Example C, compute the limit of 0X as Ax —* 0. 

§4. Homogeneous Functions. Higher Derivatives 

A polynomial in x and y is said to be homogeneous if all its terms are 
of the same degree. For example, 

f(x, y) = x* - 2xiI + 3y- 

is homogeneous. It is easy to generalize the property so that functions 
not polynomials can have it. Observe, in the above example, that 

f(M, Xy) = y) 

for any positive number X. We use this characteristic of homogeneous 
polynomials to make the generalization. The definition is stated for a 
function of two variables, but it is easily altered to apply to a function 
of any number of variables. 
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4,1 Definition of homogeneous functions 

Definition 7. A function f(x, y) is homogeneous of degree n in a 
region R if, and only if, for (i, y) in R and for every positive value of X 

(1) f(Xx, Xy) = Xnf(x, y). 

In the above example n = 2 and R is the whole xy-plane. The region 
R must be such that (Xz, \y) is a point of it for all real X whenever (z, y) 
is a point of it. That is, R is either an angular region between two 
infinite rays emanating from the origin or the whole plane. The number 
n is positive or negative and need not bo an integer. 

Example A, fix, y) = x^y-u tan-1 (y/x). 
Here n = — I; R is the whole plane. 

Example B. f(x, y) = 3 + log (y/x). 
This function is homogeneous of order 0; R is the first 
or third quadrant (without the axes). 

Example C. f(x, y) = (V*1 + ya)8. 

Here n = %\ R is the whole plant. Observe that if 
X is a negative number, equation (1) is not satisfied 
for this function. For, 

f(\x, Xy) = |X|3/{z, y). 

Example D. f(x, y) = xHy~ii + 
This function is not homogeneous. 

4,2 Eul er’s theorem 

Theorem 5 (Euler)* 1. f(xt y) e C1 (x, y) in It 
2. f{z, y) is homogeneous of degree n in R 

(2) —4 fi(xt y)x + /2(x, y)y - nf(xt y) (x, y) in R. 

To prove this; differentiate equation (l) partially with respect to \ 

Xy) + yh(\x, \y) = y). 

Finally, set X - 1, 

We point out in passing that certain authors* define homogeneity in a 
different way, demanding that equation (1) should hold for all real 
values of X. With this definition the function of Example C is not 
homogeneous. But this definition would have the disadvantage that 
the converse of Eulers theorem would be false, whereas we shall now 
prove that the converse is valid under Definition 7. 

•See, for example A. Dei Chiaro* flSu!le Funzioni Omogenee/* Atti detla Reale 
l ccademia dei Lincei, Series 6, voL 13 f1931\ p. 475. 
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Theorem 6. 1. f{x, y) e C1 

2. xfi + yj-i = nf 

-> 3. f(x, y) is homogeneous of degree n 

(x, y) in R 
(x, y) in R 

(x, y) in R. 

It is to be understood in this theorem that R is the type of unguliir 
region described under Definition 7. Choose (xo, j/b) an arbitrary point 
of R, and form the function 

v(A) = f(\x0, \ya), 

defined for all positive values of X. Then by hypothesis 2 

f/(A) = xofiQ&o, Xyo) + y<Jt(\xo, X^o) 
iifXyo) = Xxnf i (Xaro, Xy«) 4" Xj/n/sfXaio, Xyo) 

Xp'(X) = n^(X). 

Now differentiate v>(X)X—* with respect to X, and obtain 

[v>(x)x-"]' = - n^(x)x-»--'. 

The right-hand side of this equation is zero by virtue of the previous 
equation. Hence, 

?(X)X-" = C, ■ 

where C is a constant which may be determined by setting X = 1, 

f(xo, ?/o) = C. 
f(\xo, \y0) — XB/(xo, y„). 

Since (x0, yo) was an arbitrary point of R, the tiieorem is proved. 

4.3 High er derivatives 

Higher derivatives of composite functions may be computed by the 
principles already at our disposal. As an example, let us compute the 
three derivatives of order two for the function u =/(^(r7 $)t ^(r, s)). 
We assume that the three functions involved belong to C\ 

&u 
dr — fwi + = fi<P 2 + 

Differentiating again, remember that/] and/a are themselves composite 
functions; 

i4' ^2 = / ISPll + ftp'll + Pl[/llPl + /t2^l] + iAftVpi +/2I^lJ 

dhl f I f e • r m , r * 
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+/a^ii 4" iPsLfnSPi +/i2^il + + fttifri] 
drds 

=fi<piS + fi^n + <pt[fim + fnii\ + iilfnVt + fiiii]- 
OS 

We have omitted the arguments in these functions to save space. In 
each <p or i with any subscript, they are (r, s); in each/, (<p{r, s), i(r, $)). 

If we admit that fn = fn, <fin ~ Va> lA'ia — if'au facts that we shall prove 

Inter WP see that This mil also be evident later without laiei, we ove iuai. ds<3)- 

computation. 

Example D. 
w = f(x, y) = ex» 
/, = ye 

ft = xc™ 
fn = 
fn = /si = (1 + XV)^ 
fit = 

* = »>(r, s) = r + s 

<P\ — 1 
Vs = 1 

= <pn = 0 
^21 = psi = 0 

y = i(f, s) = r - s 
.ii - 1 
it = -1 

ill = in - 0 
ill = iti = 0. 

l'rom the formulas above, we have, for example, 

dait 

drds 
= — 4rse,*“*1. 

This result can be checked directly by eliminating x 
and y before differentiating. 

Example E. it — f(g(t), k(t)) 

t - m+f*‘ 

= /ig" + fJ1” + g'\fn0r + fnh’\ + h'lftig' +ftth'\. 

This result could also be obtained from equation (4) 
by replacing <p(r, «) by g{t), i(r, s) by h{l), etc. 

EXERCISES (4) 

1. Verify Theorem 5 for Examples A and B by computing both sides 

of Euler’s equation directly. 

2. Which of the following functions are homogeneous: 

(a) yfx - Vy 
(b) log y — log x 
(c) (i* + 

(d) [~xir + xV,€X,v\^- 
(e) xf(y/x) + yg{x/y)1 
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Determine R and n for the homogeneous ones. 

3. Do Exercise 1 for the homogeneous examples of Exercise 2. 

4* Define homogeneity for f{%} ys z)} and show that it implies 

f(x, y, z) = xnf(l} y/x, zfx). 

Illustrate by an example. 

6, Prove Euler’s theorem by use of the equation of Exercise 4. 

6. If fix, y) is homogeneous of degree n, show that 

£*fu + xyfi2 + xyf21 + y'fte = n{n — 1)/. 

What continuity assumption are you making? 

7, Show that when f(x, y) is homogeneous of degree n any derivative 
of order h is of degree n — k. 

hind f/f(t)7 if/ = e* sin y, x = i2, y =s 1 — t*t first by the method 
of the text, then by eliminating x and y before differentiation. 

9* £^f(x2 ~V’x + y2) = ? 

10- eS^ymx> y’2)) = ? 

§5. Implicit Functions 

In section I we sketched briefly the method of obtaining the deriva¬ 
tives of functions defined implicitly. We now discuss the method in 
more detail. An equation of the form 

(1) F(x, y, z) = 0 

cannot necessarily be solved for one of the variables in terms of the other 
two. For example, the equation 

* 

z2 + y2 4- z2 + a2 = 0 

has no solution if a ^ 0. Even if a = 0, the equation does not define z 
as a function of (*, y) in any domain but only at the point (0, 0). We 
shall give later a sufficient condition that there should be a solution. 
For the present, we shall discuss the method of finding the derivatives 
of the implicit function if it is known to exist. That is, we shall assume 
that z = f(x, y) exists and satisfies equation (1), 

F(x, y, fix, y)) = 0, 

and we shall seek to compute the partial derivatives of z in terms of F. 
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5.1 Differentiation of implicit functions 

Theorem 7. 1. /(*, y), F{x, y, s) e C1 
2. F(x, y, f{x, y)) = 0 
3. Fs(x, y, fix, y)) ^ 0 

_. t. .a_Fi(x, y, fjx, y)) 
-► fi(*» V) ~ Vt f(Xi y)) 

Ux. v)-- *> %*• »!!■ 

{x, y) in D 
(x, y) in D 

The proof is immediate. We have only to differentiate the equation 

of hypothesis 2. We obtain 

Fi + F 3/1 = 0, Fz + F 3/2 = 0. 

The result is now obtained by dividing the equation by the non vanishing 

function F%* 

Example A, F(x} yt z) = x* + y2 + z2 — 6. 

Equation (1) now defines the two explicit functions 

z = Vfi — #2 — z — — Vfi — x2 — yK 

Compute dz/dx at (1, —1, 2). By Theorem 7 we have 

F*(x, y, -) = 2x, 1, -1,2} = 2, 
dz _ 
dx 

Fs(x, y, z) = 2z, F3( 1, -1, 2} - 4, 

B3' the explicit method, 

dz dz 1 
Sx V6 — x° — y- dx a. -1, 2> 2' 

5.2 Other cases 

The equation 

(2) F{x, y) = 0, 

treated in elementary calculus f can now be handled by the present 
method. If this equation defines y as a function of x, we can compute 
its derivative in terms of F* For, remembering that y is a function of 

x, we have 

_ __ F\ 
dx Fz (3) Fa 0. 
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Example B, u = f(xt u), Find 
ax 

This is a special case of equation (2) where Fix u) = 
fix, u) - u. ’ ' 

du . _ /l(S, u) 
dx /,(*, *) - l fl(x, u) 5^ 1. 

Example C. u = fig{x, u), h(y, «)). Find-M, **. 
dx By 

This is a special case of equation (1) where 

F(*> y> w) = f(o(x> u), h{y, u)) — u. 
~ = — /igt _ /SA, 
dx fiffi+Mt-l By -)-/aAj - I 

/i£7a — 1 ^ 0. 

5.3 Higher derivatives 

One may compute the higher derivatives of functions defined implic¬ 

itly. For example, let us compute ~ for equation (2). We have only 

to differentiate both sides of equation (3), and to remember that the 
arguments on the right are x and y and that y itself is the function of x 
denned by equation (I). Then 

d-l = _ Wi + ~ FiCFa, + FW) 
dx2 pt -—   

But y' is given by equation (3), so that 

tM - - (El, 'I- F„)F,F, + F^Fl 
dx2 ~ --—* 

B and° mannei' WC ('°ul'i comPute tho higher derivatives for Examples 

. We observed at the beginning of this section that it is possible to 
give sufficient conditions that, a given equation should have a solution 
The essential feature of the condition is precisely the nonvanisbing of 
'16 _""ictions which appear in the denominators when computing the first 

ThUS; 5r CqUation <*) :t is F* * 0; for equation 
t ’ t A i °r ?Xampl<! B the edition is ft * 1, and for Example 0 

... . 110\,1 1 ff °- Tlie student should be careful to insist explic- 
i \ on the non vanishing of every denominator. Observe that it mav be 
possible to solve a given equation for any one of the variables appearing, 

ne can be certain which is intended in a given problem if any derivative 

is written. Thus, if is required in connection with equation (1), wc 

may be sure that x is the dependent variable; y and a, the independent 
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variables. We find 
3x _ _ Ft 

By F t 
By_Ei 
dx F 2 

dx 
dz 

By 
dz 

Fj 
Ft 
Fj 
Ft 

F i^O 

Ft * 0. 

EXERCISES (5) 

dz dz . 
If xy 4. yZ ~~ Xz = 2, find w-» w- by the method of the present sec- 

ux oy 

tion and also by first solving for z. 

2. Find ^ for Example B. Verify vour result by the explicit 

method if / = x + w* 

3. If x2 + = f{x, u) + g{x, y, u), find ^ 

4. If w = fix, y, u), find Jy ~ 

d^Z d^Z !2z(35 ” 11 
6. If z(z2 + 3x) + 3y = 0, prove that ^ ^ = -(gi + * 

6. If u - fix + u, yu), find and 

7. In Exercise 6, find — i 
ot* dy 

8. In Exercise 6, find ~ • 
du dx 

du 
9. In Exercise 6, set y = p{x) and find 

U/U 
10. In Exercise 6, set u — y) and find “ 

§6. Simultaneous Equations. Jacobians 

The method of the previous section applies equally well to functions 
defined implicitly by a number of simultaneous equations. Here again 
we do not discuss the solubility of the system of equations but only the 
method of finding the derivatives of the solutions, assumed to exist. 
The student should be familiar with the elements of the theory of 
determinants. In particular, he will need Cramer's rule for solving 
simultaneous linear equations and Laplace’s method of expanding a 
determinant by means of minors. 

f 

6.1 Two equations in two unknowns 

Theorem 8. 1. F{u, v, x, y), G(u, v, x, y),f{x, y), g{x, y) e 
2. F(f(x, y), gix, y), x, y) = 0 

G(fix, y), g(x, y), x, y) = 0 
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3. A = 
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|Fi F -i 
Iff, <?, 

IP’s F, 

7* 0 

/. = “ 
f's Gs 

A ' 

IP’s P’sl 
f _ (?a 
/f-A ’ 

g i = - 

ffi = " 

P'S 
Gi G3 

I: 
Ps 

[Cb. I §6.5 

The proof is similar to that of the previous theorem. Differentiatinir 
with respect to x, we obtain H 

/'Vi + ^s£7i + Fa = 0 
Cpi/i + G% gi + Ga = 0* 

Solving these for/t anti gx by Cramer’s rule, we have the first half of 
our result. To obtain the other half, differentiate with respect to y. 
Hypothesis 3 is, of course, needed for the application of Cramer’s rule 

6.2 Jacobians 

Determinants like those above, whose elements arc partial derivatives 
occur so frequently that it is worth while having a notation for them.' 
This is particularly desirable when the order of the determinants is higher 
than two Let us.illustrate the notation by the use of three functions 

/ . of, variables u, v, w, x, y, z, appearing in that order. The 
Jacobian of P, G, H with respect to u, w, z, for example, is 

a(P, G, //) 
9(k, w, z) 

F i G\ H\ 

Pa G3 H3- 
F a Ga //6 

As a further example, suppose we add a fourth function K of the same 
six variables. Then amo 

Gz F3 K3 Hz 
Wi Ei K’ H) = Gi F, K4 lU 
3(w, x, z, u) G, Fa K6 Hn 

|Gi Pi Kx Hv 

It is important to observe how the order of appearance of the functions 
and variables in the notation makes itself evident in the defining 
determinant. s 

We could express the results of Theorem 8 in Jacobian notation: 

a(P, G) / d(F, G) 
3X d(X, v) / d(u, V)' 

Although the notation provides no economy in this simple case, it does 
give a convenient memory rule for the results. Except for the sign one 
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could obtain the left side from the right by treating the symbols alge¬ 
braically and canceling 3, ( ), P, G, v. Note that one has the same 

rule in Theorem 7: 

dz _ _ dF / dF dz _ dF / dF 
dx ~ dx / dz ’ dy dy / dz 

6.3 Further cases 
As another example consider the system 

P(u, v, w, x) — 0 
G(u, w, tt>, x) = 0 
H{u, v, w, x) = 0. 

Let ii, v, w be the dependent variables, x the independent variable. The 

method gives us ^ the derivatives being total since there is a 

ninsrle independent variable. We obtain 

du _ _ 3(P, g, H) / 3(P, G, H) dv_ _ _ 3(P, 6, H) , 3(P, G, H) 
dx d(x, v, to) / d(u, V, w) ’ da: d(u, x, to) / d(u, v, to) 
dw _ 3(P, G, H) f d(F, G, H) 3(P, g, H) /Q 
dx d(u, o, as) / d(u, v, to) d(u, v, w) 

Note that the same memory rule applies. 
If the foui- functions of §6.2 are set equal to 2ero, we would have, 

if we considered u, v, to, x as dependent variables, for example, 

3x = _ 3(P, G, H, K) , 3(P, G, //, *) 3{F, G, H, K) Q 
dz d(u, v, to, z) / d(u, v, to, x) d{u, v, to, x) 

Observe that the number of dependent variables is equal to the number of 
simultaneous equations. 

6.4 The inverse of a transformation 

A set of equations of the form 

“ = /(*> V, *) 
v - g(x, y, z) 

to = h{x, y, z) 

is known as a transformation, It transforms a point with coordinates 
(x, yt z) into another with coordinates (tq vt tv)* If these equations can 
be solved for z, we have three functions of u, v} w< The three 
corresponding equations constitute the inverse of the original trans¬ 
formation. They would give explicitly the point or points (x7 ys z) from 
which (uf v, w) could have come in the original transformation. 

The present method enables us to obtain the derivatives of x3 y3 
with respect to u, vf w, without actually knowing the inverse transforma- 
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tion. 
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For, we have only to set 

[Ch, f §6,4 

F(u, v, w, x,y,z) = u — f(x, y, z) 
G(u, v, w, x,y,z) = v~ g(x, y, z) 
//(«, V, w, X, y, z) = w - h(x, y, z) 

and proceed as before. For example, 

% = _ d(F, g, H) /d(F, G, H) 
dw d(x, w, zj / 0(x, y, z) 

= - *</. g) /*(/, a, ft) 
d(x,z)/ d(x, y, e) 

/1 
0 

h 
fi 
fz 
h 

91 
0 

]h_ 
Ui 
9z 
92 

hi 
1 
ht 
hi 

hz 
h 

?( f, 9, h) 
d(x, y,z) * 0. 

.Example A. x = 4u + 3» 

y = 3w -f 2v. 

Find fy' is m01'e convenient to differentiate the 

equation directly than to apply the above formulas. 

0 = 4—+3$ 
dy dy 

1 = o 9 dti 

3% + 2^ 

In this simple case, we may check by obtaining explic¬ 
itly the inverse transformation 

ft — 2x H- 3y 
v — 3x — 4 y* 

Example B. F(u, v, g(u, v, x)) = 0 

G(u, v, h(u, v, y)) = 0. 

To find for example, we must solve 

dy dy 
? \ du 
■rap + ?2 

dv 

a j- r dv _L n r, du , t di> 
Gtet + G*by+G* lkiTy + h*-ty+k 

= o 

= o 

du 
for This will be possible if 

[Fi + Fzgt Ft + F sg 2i 
10i + G, + GihJ * 0 
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EXERCISES (6) 

1. Find the derivative of u with respect to x if 

XU + uv = u — X 

If* + XD = U + X. 

Is the derivative total or partial ? 

2. If 
us + u* — xy + »a = 1 
ux — vy 4- «i> — = V> 

find first by differentiating the equations and then by use of the formu- 
dy 

las of Theorem 8. 

3. Show that Theorem 8 is not applicable to the system of equations 

u" + t,a 4- x* = ya 
log (u* + if*) + !/* = «* 

by showing that the Jacobian of the system vanishes identically. Show 
directly that the system can have a solution if, and only if, (x, y) lies on 
a certain rectangular hyperbola. Hence, the system cannot define a 

pair of functions u, v in any domain. 

4. Find — .• ^ bv use of Jacobians if 
dx dy 

u = /(«, u, x) 
v = g(u, V, y). 

6. FmdJ^if 
dx 

U = f(l, w, x) 

v = g(w, u,x) 
w = h(u, v, x). 

§7. Dependent and Independent Variables 

In the previous sections, we have been more or less consistent in our 
notation, using the letters u, v, w, . . . for dependent variables and the 
letters x, y, z, t for independent variables. In the statement of a given 
problem involving several variables, it is not always possible to determine 
from the notation which variables are intended to be independent and 
which dependent. One must then state clearly what one is assuming 
the situation to be, or else one must treat all possible cases. We shall 
take the latter point of view in the present section. If a partial deriva¬ 

tive, such as —> appears in the statement of a problem, we may be sure 
dx 
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that one of the dependent variables is y and one of the independent 
■variables is x. e shall illustrate by use of a number of examples. 

7.1 First illustration 

Find ^ if 
dx 

ci) u = fix, y) 
y = g(x, z). 

Since u is dependent and « independent, and since there must be two 
dependent variables corresponding to the two equations, we can have 
only two cases. t 

™„Cas® \ Dependent variables «, «; independent variables *, y. 
Differentiate the given equations with respect to x. 

du 
dx 

— fi 

Hence, 

du 
dx dx gt 9i * 0. 

Here^ ^ DcPentlent variables, u, y; independent variables x, z. 

?“ = /, + f dv 
dx fl+fzdi 

Hence, 

dy = 
dx 9i- 

du 
Hi =^1 +ftgi> 

3y = n 
dx ~ gv 

The following notation is sometimes employed to distinguish between 
sucti cases! 

Case I. 
dx dx * 

Case II. OMi*. 
dx dx 

onesin<lepeQfJerit vanables are used as subscripts against the dependent 

7.2 Second illustration 

du . 
Find dyer!uations (I) are given. 
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Case I* 
dx yrp 

dy * dy * 
du - dx 4 - 
d-y=f'djj+fi 

dx 
°'dy 

fry* _ f . fi 
dy h + ffi 

dXyg 

dy Qi 

Case IT. In thia case, the two equations 
dy dy 

pendent of each other: the first defines u; the second defines z* 

dy 
dZj*,x 

dy 

= h 

_ l 

Qa 

7,3 Third illustration 

• Find p- if 
dx 

(2) 

v = fix, y, z) 

x = g(y, u, v). 

Case I. The second equation alone is sufficient. 
dx 

t dx 
1 = g i *7/ 

dy 
dx _ 1 

dy (7i 

Case II. ~^T’ The first equation alone is sufficient. 

/. + /.g = °. 

dy a _/i 
dx ft 

Syx.i.u 

dx 
Both equations are necessary. 

91 7* 0. 

are inde- 

92 t* 0. 

gi t* o* 

fi 7* 0. 

Case III. 



28 

Then 
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= i - /]gs 
dx g\ + f«gz ffi ~r Jtga ^ 0. 

EXERCISES (7) 

1. Find p if 
dx 

u = x2 + 1J‘ 

V = 

Check by use of the results of §7*1* 

2. In both cases of the illustration of §7.1, find the two derivatives 
with respect to the other independent variable. 

3. For equations (1) find *!"“• 
0X* 

4. Find ^ if 
ot 

fix, v, t) = 0 
g(t, u, x) = 0. 

5. Find—if 
dx 

f(u, V, w) - Xs 
g(u, v, x} = log w 

h(u, v, w, x) = 0. 

6. For equations (2), enumerate all cases in which both equations 
are necessary. 

7. Find ~ (three cases) if 

u 

V 

§8. Differentials, Directional Derivatives 

We shall introduce briefly the idea of the differential of a function of 
*several variables. Just as for functions of one variable, one could build 

the whole technique of differentiation on the differential. On the other 
hand, the differential can always be obtained from the derivative, which 
we have already learned to compute, by recourse to the veiy definition 
of the differential. It is this latter point of view which we shall adopt. 
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8.1 The differential 
It will be sufficient to give our definitions for functions of two vari¬ 

ables. Let u = f(x, y) be a function of C\ x and y being independent 

variables. 
Form the following function of four variables: 

y, r, s) = /■(*, y)r + fcix, y)s. 

If r = A.Z, S = Ay are variables whose range is a neighborhood of r = 0, 
s = 0, then the differential of u, du is defined as <p(x, y, Ax, Ay): 

(1) du - <p{x, y, Ax, Ay) = fi(x, y)Ax + fi(x, y)Ay. 

Thus, there is associated with each point (a:, y) where/(x, y) is defined, 
a differential which is itself a linear function of two variables Ax, Ay, 

Example A. u = fix, y) 

<t>{x, V, r>«) 

du 

Example B. u = figix, y), h(x, y)) 
(2) du = if iff i + fihi)Ax + (Jig 2 + fshi)Ay- 

It would be a simple matter to deduce the fundamental rules for 
obtaining the differentials of sums, products, quotients, etc. In fact, 
such a procedure would produce a slightly simpler technique than the 
one we have already developed, in so far as it concerns composite functions. 
We illustrate by Example B above. Here, from the definition of the 

differential, we have 
dg = OiAx + gAy 
dh — hi&z + h$Ay. 

Substituting in equation (2), we have 

du = df = f\dg + fdh. 

Observe now the close similarity of this result with the definition in 
equation (1). It is precisely this sort of similarity which could be 

exploited to effect the simplification referred to above. 

8.2 Meaning of the differential 
The student is familiar with the fact that the equation of the tangent 

plane to the surface z = fix, y) at the point (x0, ya, z<r) of the surface is 

z — z<> = fiixo, I/o)(x — Xa) + feixo, yo)iy ~ Vo)- 

X , _ 1 , . 

r xs 
' y y1 

Ax xAy 

x 
ifi 

V y2 
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1!k> length, \az\, of the ordinate x = x0 + Ax v = 4- a« „.t+ 
between this tangent plane and the plane a = 3o [a + V 

yMx+Mxo, y0)Ay\ = \dz\iXa,M. 

Since a surface lies close to its tangent plane near the nnint of * 
1*1 will be nearly H for Small values of J",Sta" Z2 

"" eaaly computed thau is, the former 1, frequently uted m X 
of the latter in computation. y U5ea 111 placc 

Example C. Find approximately how much x* + *• chan wfaeQ 
(x, y) changes from (1, 1) to (1.1, ,9}, 

,f ~ 2xAx + 3y2Ay Ax = .1, Ay = - ] 
d(x* + V*)ld,» = 2d* + ZAy 
Approximate change in (z2 + tf) = |2(.i) 4. 3(-.i)| 

Actual change in (x2 + y3) — ,061 

8.3 Directional derivatives 

In lit r;V;ntr0d- a naturaI generalization of partial derivatives 
t,he dfn’tion of Mxo, yB), the numerator of the difference que lent 

u^d mvolves the values of/(*, „) at two points (x. + Ax, ™ andSf 7? 

firstxnt mchei thc “»"* ail; 
the line x- x \v V° a 1*°' Vo + ^ aPProacbes (a;0j y0) along 

ut tai £, X nm I0PlM8 th“ *" — by an arbitrary 

A direction £, is defined as the direction of any directed line lvh,Vh 

the counter^ock^l^ie a **** m°aSUrCcl in 

“point <o’°> to £ s sr:tr 

f. 0?“° ne 0/ **■ »> » to *>«*■»» 

#1 => lim + Aa cos a, & -f Aa sin «) - f(a. b) 
----■ 

Example D. /(*, y) = x* ~ 2y, a ^ l, b = 2, a = 3^/4. 

W .. ,i„ 
(L2) Ar—»'J A v 

+ 3 

At each point *,,) a function has infinitely many directional den^ 

t,vc, so that — is , tunction of ,he (hre8 variab]es r_ y_ __ ^ com_ 

putme a directional derivative of higher order, the variable „ must of 

4 
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course, be held constant. For example, if 

~ = x cos a + y sin a, 
d£a 

then 

£ 
«fe. - . . , ... 

lx + As cos a) cos a + {y + As stn a) sin a - X cos a - y sm « 
= lim-— As A*“+0 
= cos' 

d-± _ Jl_ (3A 
d£a2 a|B \3f«/ 

a + sin2 a = 1 - 

Observe that 

df _ f 
flio " fl> 

a/ _ t a/ 
at/2 “j!l at 

Theorem 9. 1. f(x, y) e Cl 

= -A, 
a/ = 

a^/a /s' 

5/ 
at 

= fi(x, y) cos « + fi(x, y) sin a. 

By Theorem 3 we have 

/(a + As cos «, b + As sin «) - f(a,b) = f^a + QiAs CQS ^ fi) cog a 
As 

+ /a(fl + As cos a} b + flsAs sin a) sin at 

where 0 < Bi < 1, 0 < 0* < 1- Now, when As approaches zero, we 

obtain the desired result. 
This theorem enables one to compute directional derivatives without 

reverting to the defining limiting process. In Example D, we have 

~jr = 2x cos a “ 2 sin o! 

for any point (x, y) and any direction a. In particular for x — 1, 
y = 2, a = 3ir/4, the derivative is -2 \/2 as before. We also have 

for this example 

2 cos2 a, 

8.4 The gradient 

For a fixed point (a, 6), let us determine the direction £a which will 

rif 
make — a maximum. Set 

d 

F(a) *= fi(at b) cos a + f2{a, b) sin a. 

Then F(a) will have a maximum or minimum when 

F'(a) = — f\ sin or + /? cos a = 0. 
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Zu\-md h arCI1U,t,botl1 2ero' thia equation Will have just two distinct 
solutions and «, between 0 and 2x determined by the equations 

(3) sin «i ft 

virm 

sin q:2 “ — 
VJV+n 

For these directions we have 

cos a* — ~ 
Vfl+tt 

Of 

0(* 

Hence, M is maxilriuni in the direction U, and is minimum in the direc¬ 

tion U- Of course, «, and a, differ by x. If /, = f2 = 0, the maximum * /i — j* — u, tue maximum 

and minimum values of are both aero, since the directional derivative 

is constantly zero. 

Definition 9. The gradient of f{x, y) at a point (a, b), 

Grad f(x, 7/)|<0(W, 

Z ZLfoT”'"'Ua-6,1+/i(a'»»" *«■*• u *+* 
EXAMPLE E. fix, y) = X- - xy + if 

Grad/(i, v)J(i,D is a vector of magnitude V26 in the 
direction defined by the equations 

sin «i = —-— — ~1 
V26 

We have proved the following result. 
Theorem 10. 1. f(x, y) E Cl 

2. f,(a, bf +ft(a, If * 0 

COS a I — 

V2& 

Max ~r = c/i(a, by +ft(a, &)*)» 

- IS 
OU 

where is the direction of 

Grad f(x, y) \ [0i4, 
defined by equations (3). 

EXERCISES (8) 

1. Define the differentia) of a function of three variables. 

2. If u — h(f(x, y), g(x, y), h(x, y)}, show that 

CK. I §s.4j PARTIAL DIFFERENTIATION 33 

3. Show that 
dF(f{x, y, *)) = F'df, 

dF(f(t), (7(0) = Fidf + Fidg. 

4. In a 3, 4, 5 triangle the short leg is decreased, the large leg is 
increased by 1 %■ What happens to the hypothenuse, the area, and the 
base angle? Obtain the approximate and the exact changes. 

6. If f(x, y) = xy + x log y, 

finder! , Grad/|(2,i). 
0?rr|(2,I) 

6. If Tj $ are polar coordinates, show that 

7. Show that 

tr,9y 

E_ 
d|fl-Hr/2 ir,V) 

= Mr, 8) 

= ~S*(rt 0). 

Of 

8. Find the gradient of /(r, 8), 

9. Show that -- — (cos #)|Grad/|, 

where Grad/[ means the magnitude of the vector Grad / and is the 
direction of that vector. 

10* If u — \fx2 + if-, |a is the direction of the interior norma! to the 
circle 

(x ~ iy + (y - 3}2 - 25 

at the point (4, 7) and 7 is the angle measured from the interior normal 
to the line directed from (4, 7) to (0, 0), show that 

du 

W« 
cos 7, 

11* In Exercise 10, replace £« by an arbitrary direction and (4, 7} by 
an arbitrary point (a, b) and prove the same result. Here 7 is the angle 
measured from the direction to the Hne directed from (a, 5) to (0, 0), 

12* If 
flix, y) = Oi(x, y) 

Mx> y) y), 
show that 

j£ = og_ 
0 ia h 
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13. Find $ If 

f = e™. 

14. Find ^ if 
die” 

f = (* + y)”. 

§9. Taylor’s Theorem 

It is assumed that the student is familiar with Taylor's series with 
remainder for a function of one variable. However, by way of introduc¬ 
ing the "exact” remainder, which is less generally used than the Lagrange 
form, we give a brief derivation of the formula. 

9.1 Functions of a single variable 
Theorem 11. 1. /(*) e C°+l |a: — a| £ A 

(1) —> /(*) = TO {x - ay + />»(0 dt 
tTo 0 

|x — o| £ h. 

To prove this apply integration by parts to the integral appearing 
in equation (1): 

Rn = /V+l,W ^r1 dt = —fln)(a) {-^)n + 

Repeated use of this equation, each time reducing the subscript of H by l, 
leads finally to Rq on the right-hand side* But 

Ro = faxrm=m -m- 
Eliminating all Rfs except Rnj we obtain equation (1). 

To obtain the familiar Lagrange or Cauchy remainders from this, we 
use the “first mean-value theorem" for integrals, which we prove in 
passing. The result will appear as a corollary to a more general theorem 
in §4, Chapter F« 

Theorem. 1, f(x)t g(x) zC a ^ x g 6 
2. g(x) SO a ^ x g b 

(2) -> J* f(x)g(x)dx - f(X) Jnbg(x)dx a £ X Z b. 

Let M and m be the largest and smallest values of f(x) in (a, 6). 

Then mg(x) £ f(x)g{x) g Mg(x) 

m g 
/oV(x)g(x)dr 

jT6 g(x)dx 
g M 
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provided the denominator is not zero. The continuous function f(x) 

takes on every value between m and M somewhere between a and b * 

In particular, it must take on the above quotient of integrals at some 
point x = X. Hence, equation (2) holds. If the above denominator 
is zero, equation (2) reduces to 0 - 0 for an arbitrary X. Note that 
hypothesis 2 might be replaced by g(x) £ 0. 

(x — A* 
Lagrange remainder. Take g(t) = ——j— Then 

17(0 a ■& l-gx if x > a 
( — 1)" £7(0 £0 sgign if x < a 

r. - /; ^ 

Cauchy remainder. Take j/(0 = 1. 

Rn = /*"+»(X) ■~ (x - «)■ 

In botli cases, X is between a and x. 

9.2 Functions of two variables 

In the proof of the next theorem we shall have to find the successive 
derivatives of the function 

F(t) = f(a +ht,b+ hi). 

We have 

F\0) = b)+k~f(a, b). 

It is easy to show by induction that 

F<">(0) = 

/-o 

h>kn-’ 

(n\ — n‘ 
\jj - - j)l 

d”Ka, 6) 
da‘db”-> 

3 - 0, 1, 2, ■ • , n. 

On account of the similarity of this sum to a binomial expansion, we 
introduce the following symbolic notation: 

F«(0) = 

* See Exercise 11 of §6, Chapter V. 



36 PARTIAL DIFFERENTIATION [Ch. I §9.2 

Theorem 12. 1. f (x, y) t Cn+t |ar— a\ £ h, \y - b\ £ h 

(3) 

re. = r.a -0"A A + feiV 
Jo 71/ V aa + * 36 J 

(« + nj?(* 

J /(« + A/, 6 + kt)dl 

da 

r? \"+l 
+ km) /f° + aft, 6 + 0fc) o < o < i. 

To prove this, we have only to expand F(t) in Taylor's series: 

j-0 

F<”+»(0) 

+ (71+1)1 
0 < 0 < 1. 

The result now follows by introducing the symbolic notation for F^(Q). 

Another useful form of equation (3) Is obtained by replacing a + k by 
x, b + k by y : 

n 

Six, y) = £ t + *)'/«,. b) + K 

r> _ 1 (- d , -r 3V+1 
" “ WTW\ \x ~ a U + y “b Jb) 

f(a + 0(a; — a), b + 6(y - b)) 0 < $ < 1. 

A particular case of the theorem of interest is obtained by taking 
7i = 1: 

(4) /(a + h, b + k) - /(a, 6) = f^a + Oh, b + 6k)h 

+ /s(a + Oh, b + Ok)k 0 < 0 < 1. 

Note the resemblance between this equation and equation (2) of §3. 
Observe that we have replaced 0, and 0, by a single 0, which now occurs 
symmetrically, liquation (4) is known as “the law of the mean for 
functions of two variables." It could not have been introduced in 
place of Theorem 3 since we could not have computed F'(0) at that stage. 

Example A. f(x, y) = *> + xy ~ V1, a = 1, h = -2 

/(l, -2} = —5,/t(l, -2) - 0,/s(l, -2) = 5 
/11 = 2, fn = l,/s2 = — 2 
x2 + xy - y"- = — 5 + 5{y + 2) + *[2(* - 1)* 

+ 2(x~ l)(y + 2) — 2(y + 2)1]. 
This can be cliecked algebraically. 
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Example B. f{x, y)t.Cl, g(x, 3/) 1C1, /(0, 0) = ff(0, 0) = 0 

9U0, 0) + (fS(0, 0) ^ 0. 

Find 
fix, y) 
g(x, y) 

as (x, y) approaches (0, 0) along the line y = \x. 
By Theorem 12, 

fix, y) = f,(6x, Oy)x + /5(to, Oy)y 
g(x, 1/) 0iy)x + 92(6,x, 8,y)y 

0 < 0, 01 < 1 

1{m fix, y) _ /.(0,0) + v»(0, Q) x „ o 
o&y) ' ff.(o, 0) + xffs(o, o) 

EXERCISES (9) 

1. Expand (1 — 3* + 2y)3 in powers of x and y and check by algebra. 

2. Expand (1 — 3x + 2y)1 in powers of x — 1 and y + 1 and check. 

3. Expand in powers of a; and y. Show fij’st that 

dneIV 

dxmdyn (0.0> 
= 0 

= ml 

2m ^ n 

2m — n. 

(m = 0, 1, 2t fn) 

Check by use of the Maclaurin series for if. It is not required to show 
the convergence of the series to the function. 

4. In Example B, when will the limit be independent of X? Give an 

example. 

6, In Example B, let the first partial derivatives of / and g \ie zero 
at (0, 0). Obtain the limit under further conditions which 3rou are to 

impose. 

6. Let (x} y) approach (0, 0) along the line y = —z. Find 

sin xy + — y 
lim 

x cos y + sin 2y 

7. Same problem for 

lim 
— 1 

sin x log (1+|/) 

8, Extend Taylor’s theorem with remainder to functions of three 
variables. 

9. If /(0. 0) = 0(0, 0) - 0, find 

f(xt xs) 

*o ar) 

What properties are you assuming for / and gl 
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10. If m 1, 1) = /,(0, I, 1) = MO, l, 1) = o, find 

i; /(», cos x, cosh a;) 
*—o fix2, cosh x, e*) 

What assumptions axe you making about f{x, y, z)? 

§10. Jacobians 
We discuss here certain further results concerning Jacobians. They 

are found to be useful in the problems of change of variable. A criterion 
for the functional dependence of several functions can also be given in 
terms of Jacobians. This latter result will be given in section 12. 

10.1 Implicit Functions 

We have already used Jacobians in differentiating functions defined 
implicitly. We now give a more general case. Let 

f{u, v, w, x, y, z) = 0 
g(u, v, w, x, y,g) = 0 
k(u, v, w, x, y, z) = 0, 

the equations being assumed to define three functions u, v, w of tin 
variables x, y, z. Then 

U 

9* 

K 

t du, do dw 
flTx+f*di+f*te = ~ 

du . dtv 
Gldi + g2rx + g*te = - 
* du t dv t . dw 
k'd-x+h* dx + k* dx=- 

Solving these linear equations, we obtain 

du _ _ djf, g, A) 
dx d(x, v, w) A 

where 

10.2 The inverse of a transformation 

Let the transformation 

(t) u = f(x, y) 

v = 0(x, y) 

dx = _ d(f, g, h) 
dx d{u, x, w) A 

A^dif1g1ki 
diu, V, w) * U- 

_ __ djf, g. A) i 
dx d{u, v, a*} A 

f dju, v) 
dix, y) 

0 

with Jacobian 
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have an inverse with Jacobian 
. = djx, y) 

* 3 v) 

].et us investigate the relation between these two Jacobians. Computing 
the derivatives in question, vve have 

dx _ Qt 
du J 
dx _ /* 
do J 

dy _ _ £i 
du J 

Ov -h 
do ~ J ’ 

so that 

Hence Jj — l, or 

3 = 
gi -g i 

—h fi 

1_ 
J2 

1 
J 

dju, t>) d(s, y) = 1 
d(x, y) d(u, t») 

Note the useful aid to memory obtained by canceling symbols, 
bet us generalize to three functions, 

u = fix, y, z) 

» = ff(*. V, 2) 
w = h(x, y, z) 

For the determinant 

J = 

J = 

d(u, a, u>) 
dix, y, z) 

A ft ft 
Qi Qi 0% 
hi ft 2 ft3 

. = d(x, y, z) 
J d(u, w) 

write the determinant of cofactors 

F i Ft 
K = Gi Gi 

F* 

Hi H, Hi 

For example, the cofactor of g* is Gi, 

Gt = _ ,/i u 
Hi Hji. 

Then 

dx 
3« 

Fi dy 

dy 

dz 
dw 

Ft 
7' J dy J 

with similar equations for the derivatives with respect to v and w. Then 

. K 
3 J*' 
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But 

fi ft u Ft F, Fa ./ 0 0 
JK = 3 i * Gt G, = 0 V 0 

hi h-2 h,\ Hi Hi Ht 0 0 J 

so that Jj — 1, as before. 

10.3 Change of variable 

If 

« = /(*. V), x = <p(r, s), 

» = 3(x, v), y = Hr, s), 

then u and v may be regarded as functions of r and s. Let us compute 
the Jacobian 

Hu, v)' 
d(r, s) 

Direct computation gives 

(2) Hm, v) = 
Hr, ») 

fivt (h<pi 4- y-i'f'i 
Siv-t + /s^2 gt<p2 + gii/2 

= Hm, v) d(x, y) 
d{x, y) 3(r, s)' 

Mote the analogy of this result with the formula for the differentiation 
of a composite function of one variable. It generalizes easily to func¬ 
tions of more variables. 

1. If 

EXERCISES (10) 

u = Zz 2y — z 
v = x — y + 2 

if = x + 2y - z, 
find the explicit equations for the inverse transformation, 
pute J and j and show that Jj = 1. 

2. If 

u = 2xy, x = r cos B, 
v = Xs — y", y = r sin $, 

eliminate x, y and thus compute the Jacobian 

Then com- 

Hr, B) 

Then verify the result by use of equation (2). 

3. If f, g, k are functions of x, y, z and if 

x = F(u, t) y = G[u, v), z = H(u, v), 
show that 

Hf, g) = atf.g) HV, «) , Hf, g) Hz, x) m g) d{x, y) 
Hu, ») d(y, z) d(u, v) 3(z, x) d(u, v) "** 6(x, y) d(u, v) 
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4. Jn the previous example, compute d(ff. *) 
d(u, v) 

6. If 
* = fir, s) 
y = g(r, s) 

and if A- is a function of r, s, show that 

Oh d(h, g) 1 Hi _ Hf, k) 1 
dx d(r, s) J’ dy d(r, s) J 

T _ *(/. g) 
Hr, «) 

0, 

6. If 
f(u, v, x,y) = 0 Hf, g) fl 
g{u, v, x,y)= 0 d{u, v) ‘ 

prove that 
Hu, v) _ Hf, g) t Hf, g) 
d{x, y) d(x, y) / 3(w, v) 

Illustrate by equations (1). 
Hint: Apply the Laplace expansion to the determinant 

fi fi fi fi 

3i ffi 3z 3* 
fi ft h f* 
g t ffs Qi (74 

§11. Equality of Cross Derivatives 
We stated earlier that under certain very general conditions/l3(x, y) = 

/=](£, y)- In all cases thus far encountered this has been true. We have 
usually been able to verify it by direct computation of the two deriva¬ 
tives.- We shall show here that the result is true for all functions of class 
C4, and we shall give an example of a function for which the cross deriva¬ 

tives are not equal. 

11.1 A preliminary result 
Let us define two operators A* and A» on a function f{x, y) as follows: 

A4(xfi, y0) = f{x0 4 Ax, i/o) - f{z«, ya) 
Aw/(x0, Vo) = /(*o, ya 4 Ay) - f(x0, y„). 

Lemma 13. For any function f(x, y) 

AxAJ(Xo, yf) ~ AvA4{x0, ya). 

For, 

AtA4(x0, Vo) — A4(xa, y0 + Ay) — A/(x<>, Vo) 
= f(xa + Ax, 7/o 4- Ay) - /(xo, i/0 + Ay) - /(x0 + Ax, y0) + f(x0, yB) 

AuA4(x0, y0) = AJ(xo + Ax, ya) - Aj(x0, ya) 
=■ f(x0 + Ax, ya + Ay) - /(xa + Ax, yn) - f(xB, ya 4 Ay) 4- f(x0, ya). 
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11.2 The principal result 

Theorem 13. 1. f(x, y) t C! 

—► /«(*, y) = /si Or, y). 

Let (x0, yo) be an arbitrary point in the domain where / e C-. Then 
by Lemma 13 we have 

A*A[/(xo, Vo) ~ AuAif{xt, ya). 

Set 

v(V) = f(xo 4* Ax, y) - f(xQ, y). 
Then 

AvA*f{xo, 2/o) — Av<fi(yo) = tp{ya -}- Ay) — tp(ya) 

= p'(Vo + 8iAy)Ay 0 < 6i < 1. 
(2) = fi(x0 + Ax, yo + OiAy)Ay — /s(a?0) y„ + $tAy)Ay. 

Set 

i{x) = /(x, y0 + Ay) - f(x, y0), 
so that 

AiAvf(xo, yo) — A{xa) = ^(i0 -j- Ax) — \{/(xq) 

— ^'(*0 + 81Az)Ax 0 < 0i < 1 

= Mx* + 8n-Ax, yo *f Ay)Ax - /iOo + 6tAx, ya)Ax. 

Now apply the law of the mean to the right-hand sides of equations 
(2) and (3) and use equation (1)* Then 

(4) /«(*o + <hAx, yQ + d^AyAx = f3l(xa + $3Ax, y0 + 64Ay)AxAy, 

where 0 < 03 < 1, 0 < 04 < 1. Now cancel Ax and Ay and let both 
approach zero. This gives the desired equality at C^o, yo). Observe 
where the hypothesis f t C- enters into the proof. Some less restrictive 
hypothesis would clearly be sufficient for the various applications of 
the law of the mean, but the full force of the hypothesis in so far as it 
concerns and/n is used in the final limiting process. The conclusion 
of the theorem is, in fact, true under weaker hypotheses. 

11.3 An example 

We have already seen many examples of the theorem. The following 
example is one for which /1S ^ fn. 
Set 

/(*, U) - x* + y* * 0 

m o) = o. 

It would be easy to show by the formal rules of differentiation that 
/n =/ai when (x, y) is not the origin. These rules are not applicable 
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at the origin* however, since the denominator of the fraction is zero 
there* Hence* we revert to the definition of the partial derivatives. 

0, . urn Mto.Q) -mol = to 0 . 0 
;1V ' ' Ax-,0 Ax 4*-0 Ax 

/!(0,0), to^0|^ -/(°’0). to ° -o. 
* - A^Q &V AZ^Q&V 

3*2 y2 Aryl 
Mx> y) - 2y ^ + ~i + 2*y ^5 _|_ yty 

MX, y) = 2x ~ 2xy (x^yt)i 

x* + yt * 0 

xs + y’- * 0 

Mo,o) - to^°>-M0..°J.to^-a 

/!l(0, 0, - to^^-W-P! . to - ^ - -2. 

11 is important here to distinguish carefully between /u(0, 0) and 

lim/uCx, y), 

Ir^O 

for, of course,/isCx, y) is not continuous at (0, 0). 

EXERCISES (11) 
1. If/(x, y) = x* — 2x?/ + 2yi, compute 

(a) A,/(0, 0) 
(b) AvAif( 1, -2). 

2. For any function /(x, y) show that 

&AA4(xo> yo) = AKAAtf(x0, Vo). 

3. Prove by use of Theorem 13 that 

ay = ay 
dxdydx dydx2 

What assumptions on f(x, y) are you making? 

4. Show' that 

d4f(x, v, z) = d'f(x, y, z) 
dxdydz3 3xdzdydz 

6. If 

/(x, y) = xs tan-1 - — y- tan-1 - x1 + y? 9* 0 

m o) = o, v 
prove 

M(Q, 0) ^ /n(0, 0). 
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§12. Implicit Functions 
We have hitherto assumed the existence of a function y = f(x) that 

would satisfy an equation 

(!) F(x, y) = 0. 

We give in this section a sufficient condition that this should be the case. 
It is easy to see that certain equations (1) do not define y as a single¬ 
valued function of x. Consider 

(2) 
(3) 
(4) 

F(x, y) = x* + ys + 1 
F(x, y) = x* y- 
F{x, y) = x- + y* - 1. 

In the first case (2), equation (1) is not satisfied for any point. In 
the second case (3), equation (1) is satisfied for x = y = 0 only, so that 
f(x) is defined at only one point. In the last case (4), equation (I) does 
define the two functions 

y = VI - xs, y = - VT - x\ 

But even in this case the functions are not defined in a two-sided neigh¬ 
borhood of x = 1, or of x = -1. Note that in this ease 

*•(1,0) = 0, F,(-l, 0) =0. 

12.1 The existence theorem 

We shall show that if 

F(xa, y„) = 0, Fi(x0, y0) * 0, 

then equation (1) can be solved for y when x is in a hvo-sided neighbor¬ 
hood of Xo. 

Theorem 14. 1. F(x, y) tC' \x - xt\ < S, \y - jJ < 5 

2. F(x0, y0) = 0 
3. F2(x0, yo) 0 

t I here exists a unique junction f{x) and a ‘positive number 
rj such that 

A- y0 = f(xa) 
B. F(x, f{x)) = 0 
C. f(x) e C1 

I# — Xo| < v 
\x - Xo| < 7), 

It is no restriction to suppose Ft(x0> y0) > 0. By continuity, F,(x, y) 
> 0 in a whole neighborhood of (x0l y0), which we assume to be the 
original 5-neighborhood, Clearly F[xo, y) is an increasing function at 
V = Vo, so that there exists a positive number t such that 

F(x<t, y0 + t) > 0, F(z0, 2/0 — «) < 0. 
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Bjr the continuity of F, there exists a positive number y such that 

F{x, y0 + i) > 0, Fix, y& - t) < 0 |* - x6\ < ij. 

A continuous function passing from positive to negative values must pass 
through zero.* Hence, for each x in the interval x0 — y < x < x0 + y, 
there is just one value of y, which we call fix), between yo — t and 
yg 4. t where Fix, y) = 0. If there were two such values of y, Fs would 
be zero by Rolle's theorem, contrary to assumption. 

We have thus established the unique existence of /(*). Conclusions 
A and B follow from the manner of definition of fix). To prove C, 
consider the arbitrary pair of values (*t, yi) where 

Vi = fix 1) Xo - v < Xi < Xo + TJ. 
Set 

yi + Ay = f(h + Air) Xo - 17 < *1 + Ax < Xo + y. 

Then by the law of the mean for functions of two variables, 

F{xi 4- Ax, y 1 4- Ay) = 0 
= Fi(Xi + 6Ax, yx + $Ay)Ax + F..(Xi + 6Ax, yx + 0Ay)Ay 

0 < 6 < 1. 
Bence, 

f(xx) = &£ _ _ Fijxu yi? 
a*-o Ax Fojxi, yx} 

This quotient is a continuous function of Xi, \yx = /(xi)], so that /e Cl. 
This completes the proof of the theorem. 

The theorem can easily be generalized to include functions of more 
than two variables. For example, the equation 

Fix, y,z) = 0 

can be solved for z when (3, y) is near (x0, Vo) if 

F(xn, yo, Zo) * 0, Foixt1, yo, z») ^ 0. 

12.2 Functional dependence 

Two functions f(x, y) and g{x, y) may be functionally dependent. 
For example, if 

fix, y) = sin (x2 + y*) g(x, y) = cos (x° + y*), 

there exists a function of a single variable F(z) such that 

gix, y) = F(f{x, yj). 

In fact, in the present case 

F(z) = cos (sin-1 z). 

* See §6, Chapter V, for an analytic proof. 
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Observe that the Jacobian 
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dCf, g) = 2a: cos (x1 4- ys) 2y cos (z* + yS) 
“2a: sin (a;2 + y2) -2y sin (a2 + ys) 

is identically zero. We shall see that the vanishing of this Jacobian 
is a characteristic of functional dependence, 

1 2.3 A criterion for functional dependence 

We establish a condition that two functions of two variables should be 
functionally dependent, 

Theorem 15. 1. /(*, y), g(x> y) e O 

2. _0 

—4 There exists a function F{z) such that 

(5) 

(6) 

g{x, y) = F(f(x, y)) 

or a function G(z) such that 

Kx, y) = G{g{x, y)). 

If / and g belong to C\ one sees by direct computation that equation 
(5) or equation (6) implies hypothesis 2. This is not included in the 
statement of the theorem because of its trivial nature. 

First, suppose that all elements of the Jacobian 2 are identically zero. 
Then f and g are constants. If both are zero, take F(z) = z. If / ^ 0 

chose F(z) = Cz, where C is the constant g/f. If g ^ 0, chose G{z) = Cz 
where C is the constant f/g. 

Next, suppose that one element of the Jacobian, say /2, is not identi¬ 
cally zero. Then by the generalization of Theorem 14 to functions of three 
variables mentioned above, we see that the equation 

(7) 

can be solved for y, 

and that 

2 = fix, y) 

V = <Pix, z), 

Now let us define a function F{x, z) as follows: 

g(x, y) = gix, v(x, z)) = Fix, a). 

But we can show that F does not really depend on x. For, 

Fxix, z) = p, + g2<Pl = g, - 2^!. 
h 
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This is identically zero by hypothesis 2. That is, 

F{x, z) = Fiz) 
gix, y) = F{z) = F(f(x, y)). 

The proof would be similar if it were /i, which was different from zero. 
We should then solve equation (7) for x. On the other hand, if it were 
pi or 02, which we assumed different from zero, we should show in an 
analogous way the existence of G(z} for equation (6). 

12.4 Simultaneous equations 

Let us refer to a set of four numbers (u0, vB, xB, yB) as a point in four 
dimensions and to the set of values (u, v, x, y) for which 

lu — Mo| < 5, i>o| <5, \x — am) <5, |y - j/0| < 8 

as a 5-neighborhood, iVj(uo, to, am, yB), of that point. 
Theorem 16. 1. F(u, v, x, y), G(u, v, x, y) e Cl in NiiuB, vB, xB, yB) 

2. F(uo, to, am, yB) = G(u0, t0, xn, yB) = 0 

3. f^Oo! (mo, to, am, y0) 

-^ There exists a unique pair of functions f(x, y), g(x, y) 
and a positive number ij suck that 

A. /(*, y), gix, y) sCl \x - xB\ < y, \y - yB\ < y 

B. fixo, t/o) = Me, g(xa, yB) = t’o 
C. F{f, g, x, y) = G(j, g, x, y) = 0 \x - xt| < v, iff - Vo\ < v- 

Bv hypothesis Z} not both Fu and F* are zero at (uqs Vq, x0i y0)* Assume 
Fu 9$ 0 there. Then by a generalization of Theorem 14, there exists a 
unique function h{v, xf y) such that h(vQ} x0j yd) — uq and 

F(ht v, z, y) = 0 

in some neighborhood of fa, Zq, yd)- From this equation, hv = —FxfFu. 
We have now to solve the equation 

(8) G(k{v, x, y), vs x, y) = 0 

for v* This is possible if the derivative of the function on the left with 
respect to v is different from aero at the point in question. This deriva¬ 
tive is 

GJiv + Gv = Gv — — <?„ 
F u 

1 HF, G) 
Fu d(u} v) 

This is different from zero at (v$, yd)- Hence, there exists a unique 
function g(xi y)t equal to Uo at (xo, yf), which makes equation (8) an 
identity near (xo, yd) when it is substituted for v. Now set f(xt y) — 
h(gp Xj y). It is easy to see that all three conclusions of the theorem are 
satisfied, A similar proof holds if Fv ^ 0, 
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EXERCISES (12) 

1. Let F(x, y) — x2 — y\ Apply Theorem 11 at the points (1, I) 
and (1, -1), finding f(x) explicitly in each case. Discuss the situation 
at (0, 0). What fails there: hypothesis, conclusion, or both? 

2. If/{a:} t C at xo, /(zq) > 0, show that/(a) > 0 in a ^-neighborhood 
of xu. 

Hint: Write Jim /(x) = f(xa) in t, 5-form, choosing « = f(x<,)/2. 

'['hen by use of the inequality 

Ml - \B\ £\A-B\ 
show 

|/(*)| k |x — ®o| < S. 

3. If / (xq) > 0, fixo) — 0, show that there exists a positive number 
6 such that /(x0 + 5) > 0, f(x0 — fi) < 0. 

Hint: As in Exercise 2, show that the relation 

Ax—*0 Ax 

i 

= /'(*o) >0 J 

implies the existence of S > 0 such that 

/{z o + At) 

Ax 
m 

> o \Ax\ < S. 

4. If f{x, y) and g{x, y) reduce to the following functions of one 
variable f(x, y) - (?' g(x, y) = *> + 2x, find the functions F and G 
of Theorem 15 explicitly. 

v) ~ v) ^ 0 for all (a:, y)t show that f(xt y) is constant. 
Hinl; Use the law of the mean for functions of two variables. 

6- If/(x, y) t C1 and if fi(x} y) = 0 for all (x, y), show that/far, y) = 
<p(y)* 

I Hut: Use; the law of the mean for function of one variable* Show 
in fact, that <p(y) = /{0, y). 

7, Complete the three cases omitted in the proof of Theorem 15* 

8. Show that the functions 

/ “ ^ g = vV - 2xy + y2 - 2x + 2y 

aro functionally dependent. Kind F{z) explicitly, 

9. State and prove an implicit function theorem for three simul¬ 
taneous equations in three unknowns. 
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10. Show by Theorem 16 that under the transformation 

x _ _L V 
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u ~ V = X* + y* > 0 
x2 + ya’ w x2 + y2 

for every pair of values (u, v) near (£, i), there is just one pair of values 

(x, y) near (1,1). 

11. Same nroblem for 

u = x* — y1 v = 2 xyt 

where the corresponding values are (u$t vo) ~ (0, 2), (xni Vo) = (1, 1)* 
But show algebraically that for positive values of (u, v) near (0, 0) there 
are two values of (x, y) near (0, 0). Why does Theorem 16 fail? 

12. Same problem for 

u = x + y + z, v * x2 + y* + z*, w =* x3 + y* + z\ 

where the corresponding values are (uGi vQi wG) = (0, 2, 0), (xq, y®r z&) = 
(—1,0, 1)- Is the implicit function theorem applicable to the correspond¬ 
ing values (a*, t% w*) *= (2, 4, S), (x0? yo, **) = (0, 0, 2)? 

13, Establish conclusively the statement in the first sentence of the 

proof of Theorem 14* 

14, Same problem for the second sentence* 

15, Same problem for the third sentence. 



CHAPTER II 

Vectors 

§1. Introduction 

The student is assumed to be at least partially familial- with three- 
dimensional analytic geometry. The present chapter may be regarded 
ns a brief review of that subject, the results being here stated in vector 
notation. It will be evident that the use of vectors makes most of the 
formulas more compact. 

1,1 Definition of a vector 

By a vector we mean a directed line segment. We say that two vectors 
arc equal if the line segments defining them are parallel or coincident 
and their lengths and directions are the same. For example, the vector 
directed from the point whose coordinates are (2, —1, 3) to the point 
where coordinates are (0, 1, 1) is the same as the vector directed front 
(i, 3, 0) to ( 1, 5, —4). Each of these vectors is equal to one directed 
from (0, 0, 0) to (—2, 2, —4). The coordinates of this latter point are 
the differences of the respective coordinates of the terminal and initial 
points of either of the original vectors. For any set of equal vectors, it 
is clearly these differences which are common to the whole set. Conse¬ 
quently, we shall identify a vector with the triple of numbers obtained 
by subtracting the three coordinates of the initial point from the respec¬ 
tive coordinates of the terminal point. The magnitudes of these three 
numbers, called the components, represent the lengths of the projections 
of the vector on the three axes. The sign of a component is plus or 
minus, according as the directed projection is the; same as or opposite to 
the positive sense on the corresponding axis. We now give our formal 
definition. 

Definition 1. A vector r is a triple of numbers (rh r2, r(). Its length 
|r| is 

M = 01 + rf + rl)H. 

I ha direction cosines of the vector are ? j-^j- Its components arc T\, 

n, n. 

It is clear that a vector is completely determined by its length and 
its direction cosines. Tf |r| = 0, the vector is a null vector and its direc¬ 
tion is undefined. An ordinary real number is referred to as a scalar 
when it is to be distinguished from a vector. 

50 
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1.2 Algebra of vectors 
Various operations on vectors will now be defined. The letters 

r s j will usually represent vectors; k, l, . . . , scalars. Later, 

/will also be used as a scalar parameter 

(a) r = 0 i-► n = o 

(b) r — s <-¥ Ti = Si 

(c) $ = hr i-> Si = kn 

(d) t = r 4* s <—► ti — n - 
(e) (rjs) — I'jBi 4* nss + r3ss. 
(f) ( = rs ( ) f i = faSs fsSj, fa = r3si — ns j, 

h — fiSj ~ raSi- 

A vector equation simply replaces three other equations involving 
the corresponding components, Note that (r|s) is a scalarft is called 

the inner or scalar product of r and s. On the other hand, rs is a vector, 
called the outer or vector product of r and s. For the latter product, 

order is important, since 

/jj rs — — sr. 

The symbol — will be called the roof. Note that 

rr = 0. 
§ 

We shall abbreviate the determinant 

n si (i 
n s2 ti 
r3 s3 fa 

by the symbol (rat). Expanding by the minors of a given column, we 

have 

(2) (rsf) = (rjsf) = (mjf) = (»[&). 

The following useful relation, known as the “Lagrange identity,” 
may he verified by direct reference to the definitions; 

(3) (rs[fw) = HO(si-u) - (r\u)(s\l). 

When no confusion can arise, we shall drop the roof in this symbol: 

(rs\tu) = (rs\tu) yl(rs\tu) = Vrs\tu. 
# * 

1.3 Properties of the operations 

The following linear relations are easily proved. 

(g) (r+lft) = (r|0 + (s[f), (M«) = kfr\s). 

(h) r+ff = n + st, _Bs = k rs. 
(i) (r + st u) - (rf u) + (stu), (krst) = k(rst). 
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\Ve have seen in equation (1) that the commutative law does not hold 
lor vector multiplication. Neither does the associative law. We shall 
see presently that 

(4) rsi = (r[i)s - (s]t)r. 

Hence, 

rsT= ~7r = — (s|r)f + (f|r)s ^ r^L 

1.4 Sample vector calculations 

Example A. Prove equation (4). Let w be an arbitrary vector. 
Then by (2) and (3) 

= (?stw) = {rs\tw) = (r|()(s|tg) - (*|*)(r[w). 

Since w was arbitrary, we may take it successively as 
(1, 0, 0), (0, 1, 0), (0, 0, 1). Hence, equation (4) 
follows at once. Observe that if w is arbitrary 

(r\w) = 0 -y r = 0; 
<r|ie) = -j. r = s. 

Example B. Let a, ff, y be three vectors such that 

<«I0 = Wl7) = (tM = 0, 
(o'«) = = (t|t) = 1, (afr) = x. 

Compute 7 in terms of a. We have by the rule for 
multiplying determinants 

. , (*i« wi« osit) 
m™) = (fiyw){af}y) = («JT) (0\y) (7|7) = Ww)i 

^ («M (/8|w) (7|ia) 
$y = a. 

EXERCISES (1) 

1. Let r, s, t, u be the vectors (2, 1, -1), (L -1 2) O n _n 
(1, 2, -3), respectively, and let k = — 2. Compute ’ ’ ’ ’ 

kr, r + $, r ~ s, (r|s), rs, (r s t). 

2. For the special vectors and scalar of Exercise 1, prove (*) (M 
(l), and verify equations (3) and (4). 1 ’ 

3. Prove (g), (h), (i) in general. 

4. Prove the Lagrange identity, 

5. Prove 

(£7+ ls\t) = k(r\t) + ((#|o 

{hr + ls[kr +Js) = A*(r|r) + 2H(r\t) + P(s\s). 

kr + is mi = ? 
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6. Prove 
(rster) = (rsu)(t|t) - 

7. Let x and y be vectors whose components are functions of l. 

prove 

8. Find 

d 
di <*1*0 -(£ I *) + (*!§) 

d dy . dx 
dtxy ~ xdt+diy' 

d» 
dt * (*lv)» dtn xy* 

§2. Solid Analytic Geometry 

The vector notation is ideal for the formulas of solid analytic geom¬ 
etry. We adopt a right-handed system of rectangular coordinates, 
Figure 3, Denote the coordinates of a point P by (xit xa, z%). This is of 
course a vector x3 directed from the origin 0 to P. 
The usual formulas for directed line segments may 
now be used for vectors. We list the main formulas 
below in syllabus form. The angle between two vec¬ 
tors is defined uniquely as the angle 07 0 ^ 0 ^ tTj be¬ 
tween the corresponding directed line segments. 

2.1 Syllabus for solid geometry 
Fig. 3. 

(a) The length of a vector r is v r|r. 
(b) The vector directed from point r to point s is s — r. 
(c) The direction components of a line segment, from point r to 

point $ are the components of the vector & — r, 
(d) The direction cosines of a line segment directed from point r 

to point s are the components of —y= —| 
Vs — r\s — r 

(e) The angle 9 between vectors r and s is given by 

cos Q = 

(f) r 1 s i—> (r[$) = 0. 
(g) T II s 4—f r = fcs; 

r || s i—^ rs = 0. 

(h) The common X to r and a is rs [ra ^ 0]. 
(i) r, s, l are to a plane <—> (r s t) — 0. 
(j) The plane through point r with direction a for the normal has 

equation 

_frja) 
\/r\r ^/s\s 

(x — rja) - 0, 
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(k) The equation 

(a\x) = k (a\a) 0 

represents a plane with normal having direction a. 
(l) The distance D from point s to plane (j) is 

n = KlzjML 
■\/o|a 

(m) The line through point r with direction a has equation 

x — r = la. 

Here / is a scalar parameter* Another form of the equation is 

x *- m = 0* 

(n) The distance D from point s to line (in) is given by 

ns _ (s — ra\s “ ra) 

Ca\a) 

2.2 Comments on the syllabus 

Any three numbers r: (rh r2, r3), not all zero, may be the direction 
components of a line. They may be direction cosines i—> (rjr) = I. 

Direction components r may be converted into direction cosines: — ^ 
Vr|r 

The two signs correspond to the two possible senses for a given line. 
Direction components are used for undirected lines; direction cosines, for 
directed lines. 

Let us prove formula (e). Consider the triangle with vertices at 
points 0, Tj s. By the law of cosines, 

Or- + Os2 — 2 cos 6 Or Os — rs2 

(r|r) 4- (s|s) — 2 cos $ *\fr\r \^s\s 

- (r - *|r - *) - (r|r) - 2(r|«) + (s\s)> 

This latter equation is equivalent to (e). We have used r as the name 
of a point and as the vector joining O to the point. 

The equivalence of the two forms of (g) is worthy of comment. From 
the first form, we have 

rs — ks s = k $$ — 0. 

Hence, rs — 0. Conversely, rs = 0 implies 

(rs\rs) = (r2S2 - r^)2 + (r*ffi - ri$3)2 + (ns2 - r%sx)2 = 0 
ns* — = r3Sj ~ nss = ri^a - r2Si = 0. 
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These latter equations mean that slt s2, Sa are proportional to rh r2, 
aDd f = ks for some scalar L 

That rS is perpendicular to r and s follows from 

(rs\r) - (rsr) = 0 

(rJ.s) — (rss) = 0* 

Of course sr has the same property. The vectors rt s, rs have the same 

disposition as the axes Gxj, Ox*, Ox3. Note that 

(rsrs) = (r$|rs) S 0 

(r 8*sr) — — {rs|rs) ^ 0. 

The sign of the determinant of three vectors thus shows their mutual 

disposition. 

We can now interpret the meanings of (r[s) and rs. By (e) we have 

(rjs) = [\/?k cos 0] 

That is, (r]s) is the product of the length of one vector by the length 

of the projection of the other on it. If r and $ are not parallel, rs is a 
common perpendicular to r and s in the sense described above. Its length 
is equal to the area of the parallelogram, two of whose adjacent sides are 

r and s. For, this area is 

Vr|r V^R-sin 0 = -\/r\r \/sjs -y/l — cos2 0* 

By use of (e) and Lagrange's identity, the area reduces to 

*V/{r|r)(s[s) — (r\s)2 — \/rs|rs* 

Equation (j) states that the vector from the variable point x to the 
fixed point r of a plane is always perpendicular to the normal vector. 
Equations (m) state that the vector from the variable point x to the fixed 
point r is parallel to a fixed vector a. 

EXERCISES (2) 

1* Find the area of a parallelogram determined by the vectors 

(1, 3, -1) and (2, -1,3). 

2. Find a point midway between points r and s. 

3. Write the formula for dividing a line in arbitrary ratio in vector 

form* 

4. Prove that, points r, s, t lie on a line if, and only if, there exists a 

scalar k such that 

(1 — k)r + ks 1 = 0. 
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5. Find the center of gravity of three masses h, l, m situated at 
points r, g, tf respectively* 

6. Prove (i), 

7. Prove (n)* Treat the problem as a minimum problem of the 
calculus* 

8* Prove (1). Let t be the foot of the perpendicular from s to the 
plane* Then show that 

8 + ka> (r “ *!«) = 0, D2 = (s - t[s — t) ^ 
and eliminate k. 

9. Show that 

sin 0 
\/rs | rs 

’\/r\r V5[5 

10* Prove the law of sines by use of vectors. 

11* Show that the volume of a parallelepiped determined by the 

vectors rt st i k J(r|sT)| = J(rst)l 

12* (rs iu vw) =* ? 

13. If rt s, t are three points, show that a point | of the way from 

r to the mid-point of the segment from s to i k (r + s + OA hence, 
show that the medians of a triangle intersect in a point* 

14* IX u is the centroid of the triangle with vertices at r, s} ty show that 
the sum of the vectors r — uf s — u, t — u is zero. 

15. Prove that the sum of the squares of the diagonals of any quadri¬ 
lateral (not necessarily plane) is twice the sum of the squares of the line 
segments joining the mid-points of the opposite sides. 

16. Show that the mid-points of the sides of a quadrilateral (not 
necessarily plane) arc the vertices of a parallelogram. 

17* Obtain the usual formula for the area of a triangle in terms of the 
coordinates of the vertices by vector considerations. 

18. Show that the area ol a convex polygon with vertices at the points 
(#tj Vi)t i — , ft, is 

»t 
1 y jzj xi+ij 
2 Li w y<+ il, 

i-1 

where xn+i «= *1, yB+i = y». 

§3. Space Curves 

T-heie are several ways of representing a space curve analytically. 
We may consider the curve as the intersection of two surfaces, when its 
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equations wall be 
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F{xv, xi, x») = 0 
G(xt, xs, x3) = 0. 

Or it may be the intersection of two cylinders, 

Xz = f(xi) 

x% = g(x a). 

In this case we are determining the curve by its projections on the x#*- 
planc and on the xsx-r plane. But the most important representation for 
our purposes is the parametric one, 

xx ~ xi(t)' 
x2 -= Xs(0 
Xz = 

Here l is an arbitrary parameter. In particular, l may be the arc length s. 
We may write these equations in vector form 

(I) x = x(t). 

3.1 Examples of curves 

Example A. A circle of radius p, center at (0, 0,0) lying in the plane 

V3 
Xz = -y *i. 

Choose the central angle as the parameter t. Then 

V3 . . 
xt = y p sm t 

Xi — ^p sin t 
Xi ** p cos l. 

If the arc s is chosen as the parameter, replace l by 
s/p in the above equation. 

x. 
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Example B. A circular helix. This is a curve lying on a circular 
cylinder of radius p which rises at a rate proportional 
to the amount of turning, 

Xj 

xs 

Xi 

Fig. 5. 

Choose f as the angle indicated in Figure 5. Then if 
the factor of proportionality is k, 

Xi = p cos t 
xs = p sin t 
x3 = hi. 

Example C. 7’Ae twisted cubic. This is the curve whose equations 
are 

Xj = at 

x3 = bts 
Xs = cl2 abc 0. 

3.2 Specialized curves 

Without further statement, let us assume throughout that the three 
functions Xi((), x2(0, x3(t) of equation (1) are at least of class C1. Let us 
investigate what the vector equation (1) may represent. 

Theorem 1. Equation (1) represents a paint 4—y x'{t) =. 0. 

For, the condition is equivalent to x = r, where r is a constant vector. 

Theorem 2. Equation (I) represents a line <—§ x'(t) ^ 0, 

s 0. 
If (1) represents a line then 

x = x{t) = r + aip(t). 

Here x, rt a are vectors (a is not null) and <p{C) is a scalar function. 

x'(t) = a<p'{t) 
x"(t) m a<p'\l) 

= o. 

Conversely, if this last equation holds, x' and x" are parallel. That is, 

x"{l) - k{t)x'{t). 
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Integrating, 
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log *i(t) = + bi * = 1,2, 3. 

x'i{t) = a^mit 
Xi{t) = UiU{t) + Ti 

u(t) — fefoW'dt a, = ebi. 

Note that a is not the null vector, for if it were, x'(f) would be identically 
zero, contrary to hypothesis. We may clearly replace the scalar func¬ 
tion u{t) by a new variable u, which then becomes the parameter of 

equation (1). 
Theorem 3. Equation (1) represents a plane curve, not a tine, <-F 

*'(*)>(0 ^ 0, <*'(/) x"{t) x"'{t)) m 0. 

If (].) represents a plane curve not a line, then by Theorem 2 x'x" # 0. 
If the normal to the plane has direction a, there exists a scalar k such that 

= k- 
Hence, 

(olx') - (a|x") - (ajx"') - 0. 

This system of homogeneous equations has a solution a (not null), so that 
the determinant of the system must vanish for each t\ 

(x'x'V") = 0. 

Conversely, this latter equation implies that for the arbitrary vector w 

(2) (z'x”\z%'"w) = (x'|xV")(x'» - (x"x'x'")(x» - 0. 

Set 

y = xV', y’ = x'x’" + x'V' = xV". 

Equation (2) implies that 

yy' = 0. 

As in the previous proof, this gives 

y'(f) = k(t)yi(t) 

yS) - aJh^dt i = 1, 2, 3. 

Here a ^ 0? since y ^ G. But. 

(y\x') = (xW) 0, 

so that 
Cal*') = 0. 

Integrating, we have 

(a]x) = k. 

so that the proof is complete. 
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EXERCISES (3) 

, L Find a Parametric representation for a line through two given 
points. b 

• 

2. hind parametric equations for a circular helix that lies on the 
cylinder z? + 4 = 4 and passes through the points (2, 0, 0) and (V2 
V2, y 2). Can there be more than one such helix? 

3. Find parametric equations for an ellipse that lies in the plane 

and that has its major axis in the ziza-plano, its minor axis in the Xs-Rxia. 

4. Show that the twisted cubic with a = b = c = 1 is the inter- 
section of the cylinders 

x2 — 4 
xz — xf. 

6* Find a parametric representation of the curve 

x\ = Xi 
4 = 1- Xt* 

Obtain, by use of trigonometric functions, equations that do not involve 
radicals, 

6, Solve the same problem as in Exercise 5 for the curve 

4 + 4 - ^ 
4 + 4 — p2* 

What is the curve? 

7, Find a parametric representation involving no radicals for the 
curve 

Xiz2xz — 1 

4 ■= z\. 

8, Does the twisted cubic of Exercise 4 intersect the line 

xt = 1 + t 
= ^1+5^ 

= 1 4- 71? 

8* Find all intersections of the curve 

Xt — t1 
x2 = i* 
Xt = t\ 

| 
Ch, ll HU VECTORS 61 

and the surface 
4 =* + 2^ — 2. 

Hint: Show that the solutions are found from the roots of an eighth- 
degree equation, one factor of which is 

t\t + l)3 + 2 F{1 + l)2 + + 4( + 2, 

10* What is the curve 
x% — 1 + sin £ 
xt — —1 — sin t 
Xi = 2 sin tl 

Hint: First apply Theorem 2, Then investigate directly. Does the 
word ‘Tine77 in Theorem 2 mean an infinite straight line? 

11* Is the curve 
xi — cos el 
x% = sin 
Xs — sin e' 

a straight line? a plane curve? 

§4, Surfaces 

There are several ways of representing a surface. One familiar way 
is by a single equation of the form 

F(xit x7} x3) = 0, 

Or this equation may be solved for one of the variables: 

£3 = f(xi, x2)* 

Perhaps the most useful representation is the parametric one: 

Xt — v) 
Xt — xt(ut v) 
x3 - X3(Uj v). 

Here there are two parameters, u and vt corresponding to the two 
degrees of freedom on a surface. In vector form, these equations become 

(1) x — x(u, v). 

4.1 Examples of surfaces 

Example A. A sphere with center at (0, 0, 0) and radius p has the 
equation 

F(xi} x2f x3) - 4 + 4 + 4 - P2 - 0, 

The upper half of this sphere has the equation 

xz ~ Vp2 — 4 “ 4- 
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Finally, a parametric representation of the sphere is 

= p cos v cos u 
xt = p cos v sin u 
X* — p sin v. 

TTeie u and v may be thought of as longitude and 
latitude on the sphere with Greenwich in the #12:3- 
plane* The position ut a point on the sphere is com¬ 
pletely determined by the pair of numbers u, v. 

Example B. A plane has equation 

aiXi + a2x2 + <23X3 + a* = 0 a\ + a\ + a\ ^ 0. 

A parametric representation, if a, 5* 0, m 

X! — u 
x2 = n 

_ aiu + a2v + a4 
xz —-——- 

—(H 

Example C. A cylinder of radius p and axis coinciding with the 
xg-axis is 

Xi = p cos u 
z$ = v 

xz — p sm 0. 

Example D. A cone with vertex at (0, h, 0) and axis coinciding with 
the x^axis is 

%i = jr (h — u) cos v 

x2 - u 

Xz = ^ (h — u) sin v. 

A single equation for this surface is 

+ xl) - a*{h - X2)\ 

Example E, A torus with axis along the x^-axis and generated by 
the rotation of a circle of radius a, the center of which 
is constantly at distance p from the axis is 

Xi = (p +■ a cos w) sin v 
X2 = (p + a cos u) cos p 
Xz — a sin u. 

4.2 Specialized surfaces 

. _We assumo throughout this section that the functions Xi(u, v), 
1 - l, 2, 3, are of class C\ We investigate what equation (1) may 
represent. 
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, OX __ _ n 
Theorem 4, Equation (1) represents a point i > du — — 

For, these conditions are equivalent to x — r, where r is a constant 

vector. ^ 
Theorem 6. Equation (1) represents a curve i—► x*x» = 0, 

xl 0. 
If (t) represents a curve, then 

x = x(t), x'(t) ^ 0, 

and i must be a function of u and a: 

t = t{u, v). 

Then 
Xu = Xv — Xr(fitw 

XuXr — tutvX'x' = 0. 

and Xu and x„ are not both identically zero by Theorem 4. 

Conversely, if xuxv = 0, we have 

d{Xj, Ja) _ d(X3) £i) , d(,Ti, X2) 's 

$(u, v) — d(u, v) — 3(W, v) 

By Theorem 15 of Chapter I this implies that there is a functional 
relation between each pair of the three functions xi, is, Xt. For example, 

there may exist a function <p(t) such that 

za(«, r) = <f>(,x^(u, t>)). 

This means that the projection of the surface (or curve) (1) on the x2x3- 

plane has equation 
Xi = <p{xi). 

The projection is consequently a curve or a point. The projection on 
each coordinate plane being a curve or point, equation (I) represents 
a curve or a point. But it cannot represent, a point by Theorem 4. 

Theorem 6. Equation (1) represents a surface f—> x*x* ^ °- 

This is a consequence of Theorems 5 and 6. In fact, we may take as 

our very definition of a surface, equation (1) where xax„ ^ 0. 

A point («, t>) on a surface (1) where x„x,. 0 is called regular, a 

point where x^xv = 0 is singular. In example D, the vertex, u - h, 
is singular; all other points are regular. Ill example A, the north pole 
ti = tt/2 and the south pole v = — ir/2 are singular; all other points 
are regular. But the poles are singular through no peculiarity of the 
points but only on account of the particular representation chosen. If 
the letters xh x3, xs are cyclically permuted, the same sphere is repre¬ 
sented. But it is now the points ( + p, 0, 0) instead of (0, 0, ±p) that 

are singular. 
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EXERCISES (4) 

1- Find a parametric representation for an ellipsoid of revolution. 

2. Find a parametric representation for an arbitrary surface of 
revolution and apply it to sphere, cylinder, and cone. 

3. On the plane x2 = 2xi the position of a point is determined by 
two parameters u, v representing, respectively, its distance to the Xraxia 
and its algebraic distance to the .r^plane. Find a parametric repre- 
sentation of the plane with u and v as parameters, 

4. Solve the same problem as in Exercise 3 if u and v are polar 
coordinates in the plane. Specify precisely what u and v are. 

6. What surface do the following equations represent: 

x\ — a sin u sin v 
= 6 cos u 

Xz — a sin u cos arf 

6. Find the singular points of the surface of Exercise 5. Are they 
singulai because of a peculiarity of the surface or because of the special 
representation ? 

7. Obtain a parametric representation for a surface whose equation is 

(xi — l)1 = -f- xl. 

Test your representation for singular points. 

8. If a surface x - x(u, v) is plane, 

(a\x{v, v)) = k, 
show that 

(xuuxuxv) s m (x^XuXv) s 0. 

9. Show that the three determinants of Exercise 0 vanish identically 

xi = eu + uv 
x2 = 3 sin v — ev + 3 
is — 2uv + 6 sin v — 7. 

What plane do these equations represent? 

10. Apply Theorem 5 to 

= e“ — 3v — 3 
xt - e2u — Gvev + 9a* 
xt = (r - 3tp){e" - 3« 4- 1). 

11. Has the torus of Example E any singular points? 
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§5. A Symbolic Vector 

We now introduce a symbolic vector V (“de^,). It is an operator 
and acquires meaning only when operating on a scalar or vector function. 
The usefulness of the symbol lies chiefly in the fact that it makes many 

physical formulas more compact. 

5.1 Definition of V 

The operator V is a symbolic vector with components It 

may be applied to a scalar function F{xu x2, x3) or to a vector function 
y(xi, xz, xz) with components yt{xh x2, x»), i — 1, 2, 3. In the latter 

case, we have either the scalar product (V|y) or the vector product Vy. 
Finally, we may have the scalar product (V[V), a symbolic operator 
which may be applied to a scalar function. 

Definition 2. VF(xj, x2) xf) is a vector function with components 

dF dF SF 
dxi dxz dXt 

It is called the gradient of F: 
Grad F = VF, 

Definition 3. (Vly) = ^ + ~ _|_ This scalar function is 
OX i oXt OX 3 0 

called the divergence of the vector function y: 

Div y = (V]y). 

Definition 4, Vy is a vector function with components 

flj/a _ dj/i dyi _ _ dy% 

d%2 $xi 

This vector function is called the curl of the vector function y: 

Curl y — Vy. 

Definition 5. 

Fulled the Laplacian of F. 

d2F S2F B'F 

The equation 

This scalar function is 

(V|V)F - 0 

is Laplace's differential equation. Any solution of class C2 is a harmonic 
function. 

Example A. F — x\ — Then 

Grad F = VF*. 2xi, -j- 2x$r 2x2 
(V[V)F —2-2—0 

F is harmonic. 
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Example B. y: x\ + xtXs, xjeI7+I!, xix® sin #5. Then 

Dh1, y — (T|y) — 2xi + $28**+** -f- Z1X2 cos x3 
Curl y = Vy: xi sin x3 - xie?***, x2 - x2 sin x2, 

e*1+*‘ - xt. 
5.2 Directional derivatives 

We now define directional derivatives for functions of three variables. 
Let 0 be a given vector and r a given point. We shall refer to the direc¬ 
tion of the vector as the direction if0. Let its direction cosines be cos «j, 
cos a2, cos «3. The notation for the directional derivative of the func¬ 
tion F(xi, Xi, xs) at the point r in the direction |0 will be 

Definition 6. 

d_F_ OF . 
= vf (ri, r2, r3). 

ln.Tl.ri) Ofo 

^ (ri, r3l Ti) 

— jjm F(ri ~b &s cos cti, Tj 4- As cos a;, r3 + As cos a3) — F(ri, r2, r3) 
As 

For example, if a is taken successively as (1, 0, 0), (0, 1, 0), (0, 0, 1), 

then — is successively the partial derivatives —■ Just as 
040 ox 1 dxs 

in two dimensions, the general directional derivative can be expressed 

in terms of these partial derivatives. From the very definition of —, 

we see that it is equal to the rate of change of F in the direction 

Theorem 7. 1. F{x 1, x2> x3) e C1 

3F 
d£a 

9F dF , dF 
~ ~X~ COS ai T — cos a2 + -5— cos «5, 

OX 1 dx2 dXi 

The proof of this is analogous to that of Theorem 9, Chapter I, and 
is omitted. 

Example C. Take F, as in Example A, r: (1, 1, —1), a: (1, 0, —2). 
Then 

§r(i, l, -l) --t= + o- 
3£a -v/5 

4 2 

V5 Vs' 

That is, F is decreasing at a rate —— in the direction £a. 
VS 

5.3 Meaning of the gradient 

We shall show that Grad F is a vector whose direction is the direction 
of maximum increase of F and whose length 
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jdF 
“ V dx 

dF j 3F 
dx 

is the magnitude of that maximum rate of increase. The direction cosines 

of the direction of the vector Grad F are 

J. dF_ 1 dF Id.F 
L 3xi JL 3xj Li 3x3 

]f is ail arbitrary direction with direction cosines cos on, cos «3, cos a3 
and'makes an angle 6 with the vector Grad F, then, by formula (e) of 

section 2, 
, dF , dF , dF 
L cos 0 = cos + — cos a2 + ^ cos as. 

But this is ft by Theorem 7. Since |cos 3] S 1 

dF 
S L. 

dF Moreover, — is equal to L when £„ coincides with the direction of Grad F 
3£o 

and is consequently maximum in that direction. 

Example D. Define F, r, £„ as in Example C. Then 

Grad F| (i.i,—n ‘ 2, —4,2. 

L = 2 \/G 
2-4 1 

cos 0 — 
2 VG \/5 V30 

r „ 2 dF .. , „ 
L cos 0 — — f 1, t, — *r 

EXERCISES (5) 

L Find VF and (V[V)F if 

F = log (xi + x! + xi). 

2. Find the divergence and curl of the vector y: X\, x3, x3. 

3. Find the directional derivative of the function F of Exercise 1 
at an arbitrary point in an arbitrary direction. 

4. Same question if the point is (l, 2, -1) and the direction is from 

that point to the origin. 

6. Prove Theorem 7. 
^ jfp 

6. Find the gradient of F ~ xiX2%z- Compute — (1, ~1, 2) in the 

direction a: 2, —1, 1 in two ways, first by Theorem 7 and then by use of 

the gradient. 
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7. Find the divergence and curl of the vector: 

V■ yJ y* y T = V^i + ^ + x3. 

8. Show that /' is iiarmonic if 

F = 1 
Vxi + x\ 4- x\ 

9. IfF is defined as in Exercise 8, show that (z,, Xi) ia the com¬ 

ponent of the attraction between unit particles at (0, 0, 0) and (xt x- #3) 
in the direction £<,. 

Hint.’ Represent the attraction as a vector directed from hr, .-to xs) 
to (0, 0, 0) and of length l/(x\ + xt + x\). Then resolve it’ in’the 
direction 

10. If 

F = Vz, + xt, + x\ 

and if 0 is the angle between the vector xlt xt, a:, and the direction show 
tnat 

dF 
-xjr = cos 8. 

§6. invariants 

The great usefulness of vectors is in large measure due to the fact 
at certain operations upon them are invariant under rigid motions. 

Formulas involving such operations will consequently be the same, no 
matter what system of rectangular coordinates is chosen For this 
reason, vectors are particularly useful to represent physical quantities, 
such {is force, velocity, acceleration, etc., which are intrinsic in the 
physical situation and hence independent of a coordinate system. We 
shall show that scalar and vector products are invariants. 

6.1 Change of axes 

1 here arc two types of change of coordinates corresponding, respec¬ 
tively , to translation and rotation. For the first we have 

x‘ = ** + °i i sb 1, 2, 3. 

This is a transformation from the coordinates (x1; *,) to the coordinates 

X^\ J . e vectors themselves are invariant, as one sees from 

ptintr^tl mh0nV AnaJytically’ the vector from the point r to the 
point , n the ^-coordinates is transformed to the vector from the point 

to the point a in the a: -coordinates, where 

r' = r + a 
s' = s -f- a 
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components of the vector arc actually the same in each system since 

g' _ r* b « — r. 

Let us determine a rotation about the origin O by three mutually 

perpendicular unit vectors a, 7: 

(2) («|«) = (P\&) = (tIt) = “ = 0y, 0 - y<*, 

y = aft CarjS'y) = 1. 

Let the new axes x[, x'2, x3 have the directions of a, P, y, respectively. 
For example, a point one unit distance from O in the positive icj-dircction 
lias coordinates (a,, a2, a3) in the ^-system of coordinates. Let P be an 
arbitrary point with coordinates (xi, x2, x3) and x'2, x3) in the two 
systems. Denote the angle between the vector from O to P and the 

positive .ri-axis by 0,. Then 

Xf = L cos 8i 

where L is the length of OP. 

But 

COS 01 = (*l«) 
y/x\x 

COS 
Vx\x 

t — I, 2, 3, 

cos 03 = 
(x\y) 

Vtfx 

so that the equations of the transformation become 

(3) . = (z|a) 
x'2 = (x\P) 
x3 = (ijy). 

6.2 Invariance of inner product 
Let r and s be two arbitrary" vectors from 0 to points r and st respec¬ 

tively. We shall show that (r\s) is invariant under the transformation 
(3) , That is, if points r and s transform into / and respectively, by 

equations (3), then 

(H«) = OV). 

Tins is obvious geometrically, since 

(r[s) = \/F[r V7[s cos 0, 

where 0 is the angle between r and s. Clearly, length and angle must 
be invariant under a rigid motion. But we shall give an analytic proof. 

We have by equations (3) 

r[ = (r|a) sj = (s\a) 

(4) rj = m = (»1« 
A = (rjy) fij = (s|y), 

We must show that 

(r|«)(s|«) + (r[/3) (s!$) + (Hy)(s|t) = (r|s), 
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or by equations (2) that 

(5) (r\a)(s0y) + (r|0)(*ya) + (r|T)(aa^) = (r|s). 

This follows from the identity 

Si <*i 0i ' 7 i 

Si ax iSi Ti 

s* at 0i 72 

S* 0s 73 

Si(oti3y) — at (s0y) + Pi(say) — yi(sa0) = 0, 

* = 1, 2, 3 

Now take the inner product of the vector on the left with the vector r: 

01s) - (r]«)(s^7> -f- (r|£) (say) - (r|7)(sa/3) = 0. 

This is clearly equivalent to equation (5). 

In particular, when r - s this gives an analytic proof that length, y/r\r, 
is invariant. 

6.3 Invariance of outer product 

That rs is also invariant follows from its geometric meaning. By the 
invariance of this operation we mean that if r and s are transformed to 

/ and s', respectively, by equations (4) and if the vector 7s is also trans¬ 
formed by the transformation (3) to a new vector t', 

t[ = (r s a) 

(r sp) 

ls = (>’S7), 

then f — Psr: 

(rsa) = (r\0)(s\y) - (r\y)(s\0) - (r s\0y) 
(r 8 0) - (r|7)(d[a) — (r]a)(47) = (r s\ya) 

(rsy) - (r[a)(4/S) - (r|^)(4«) = (rs\ctj3). 

But these equations are true by virtue of the relations (2), 

EXERCISES (6) 

1. Solve equations (3) for x in terms of xf. 

2, Show that the transformation 

Zx[ ^ X\ — 2x2 + 2x$ 

3^2 — 2x% 4~ 2X2 + #3 
3xj = —2x% + ^2 + 2x3 

is a rotation about the origin. Find a, 0, y. 
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3. Take r: i3 —13 lr s: 1, 2} L Under the transformation of 

Exercise 2 show 
(rV) = (r\s) 

[r$]' = r7?. 

4. Are the results of Exercise 3 true for the transformation 

3x[ — Z\ — 2%2 + 2x3 
3s' = — 2x\ 4“ X2 ~\~2 

= 2xi 4~ 2^2 4" £3? 

Show that this is not a rotation, 

6, Find the fixed points \xf = x] of Exercise 2 and thus find the 
axis of rotation. Find the angle of rotation about the axis, 

6, Find the fixed points of the transformation of Exercise 4. inter¬ 
pret the transformation. 

7, Show analytically that the area of the triangle with vertices 0, 
r, s is invariant under a rotation, 

8* Same problem for a triangle with vertices r, s, L 

9. Show analytically that the volume of a tetrahedron with vertices 
Oj r, $, t is invariant under a rotation, 

10, Show that the gradient of a scalar function is invariant under a 
rotation. First state carefully what is meant. 
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Differential Geometry 

§1. Arc Length of a Space Curve 

Let a curve be given parametrically by the vector equation 

(1) x — x(i). 

The arc length between two points l = a and t = b of the curve is defined 
as follows. Consider a subdivision of the interval (a, b), 

a = U < fi < • ■ • < („ = b, 
of norm 3, 

6 « max (h - t0, U - th • * • f t, - 4^). 

The length Z, of the arc is defined as 

(2) L = Hm J Vx(h) - *(fc-d|*«i) - z(7^t) 

whenever this limit exists. The curve is then said to be rectifiable. The 
sum (2) is clearly the length of a broken line inscribed in the curve. 

1.1 An integral formula for arc length 

If ®i(i)» ®*(0, ®*(0 e C\ then 

L = j* Viyijpco d<. 

For, by the Law of the Mean 

n 

L = l™l (ft - ^0 

Then by Buhamd’s Theorem we have 

^ f Vx[{ty + x'sy + *&)* dt 

L * jfb vV|a;' 

Let s be the arc length measured from a fixed point t0 to a variable 
pomt t, s being taken as positive when l > i0 and negative when t < (<,. 
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Then 

Xote that s increases as l increases. The direction of increasing 3 is 

called the positive sense of the curve. 

Example A, Consider the circular helix 

x\ — cos t} * Xz = sin if x% — L 

Choose U = 0. Then 

x[ — — sin tj x*2 = cos t> xfz = 1, 

\/xt\x/ — V2 

s = y/2 dt - \/21 

Introduce £ as the parameter: 

xi = cos (s/v^), x% = sin (a/\/2)f x3 — s/V2* 

The positive sense is that which makes the x3-coordi- 
nate increase. 

Theorem 1- Let $*(£) e C\ i = I, 2, 3* Then the parameter t is the arc 

length of the curve (1) 

(5) i—> (At)\xf(t)) m 1. 

First suppose t is the arc, t — U — s. Then ds = dL Now equation 
(4) gives (5). Conversely, if (5) holds, equation (3) gives s = i — £0? so 
that £ is the arc measured from a suitable point. 

Example B, For the curve 

sin t sin t 
—7”' *i = —7E} 
\/2 V2 

#3 — cos L 

we have = 1? so that the parameter £ is the 
arc* The curve is, in fact, a circle in the plane xi = x* 
with center at the origin and of radius unity* 

1.2 Tangent to a curve 

Let us now assume that the parameter is the arc 

(6) x = x(s). 

A tangent line is defined, as for plane curves, as the limit of the secant. 
The positive direction of the tangent corresponds with the positive sense 
of the curve. 

—
. 

_ 
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Definition 1. The tangent vector to the curve (6) at a point s = sa is a 
unit vector a from the point sa in the positive direction of the tangent. 

Theorem 2, The tangent vector to the curve (6) is a = x'(s). 
Let so be an arbitrary point of the curve (G) and s0 + As a neighboring 

point of the curve. If As > 0, the vector directed from the first to the 
second point, 

ar(s0 4- As) — a-(sn), 

has a direction which corresponds to the positive sense of the curve. 
If we divide this vector by the positive scalar As, we do not change the 
direction of the vector, but merely alter its length. But as As approaches 
zero, the vector approaches the vector x'(s0). This is a unit vector 
since the arc is the parameter. 

If the parameter is not the arc, the direction components of the 
tangent are still the components of the vector x'(t), and 

_ dx _ dxdt _ x'(ti) 

ds dt ds v^W(0 

This assumes, of course, that the denominator is different from zero. 
Points where (V- 0 are called singular points and are excluded 
from discussion. 

We may now write the equations of the tangent line and normal 
plane to the curve (G) at a point x(s0). 

Tangent line. X = z(s0) + l x'{sf). 

Normal plane. (X - s;(s0)|a:'(s0)) = 0. 

\V e use the letters Xi, Xs, Xa for the running coordinates. 

Example C. The tangent veetor to the circle of Example B at the 
point t = x/4 or (1/2, 1/2, V2/2) is or = (1/2 1/2 
~ V2/2), 
Note that it is perpendicular to the vector from (0, 0, 0) 
0/2, 1/2, V2/2), a radius of the circle. 

Tangent line: Z? = i X, = i + i, 

y _ "\/2 \/21 
— 2 2~' 

Normal plane: Xi + X2 - V2 Xa = 0. 

Observe that the normal plane passes through the 
center of the circle and that the tangent line intersects 
the a^-axis. 
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EXERCISES (1) 

1. Find the arc length from t = 0 to t — 1 of the curve 

xi — % Xz = 31*, X* = i*. 

2. Introduce the arc as the parameter for the curve 

xi — xz ~ \/2 L 

3. Find the equation of the tangent line and normal plane at an 
arbitrary point of the curve of Exercise 1. 

4. Find the equation of the tangent line and normal plane of the 
helix of Example A at an arbitrary point P. If the normal plane cuts 
the :ra-a,xis in a point Qt show that the line PQ is parallel to the a^-plane. 

5. Find the angle between the curves 

at the point (1, 1, 1)* 

6. For the curve (1) show that 

ds2 = dx\ + dx\ + dxf ■ 

7. Find the equations of the tangent line and normal plane to the 
curve (I). 

8. Same problem for a curve given as the intersection of two cylinders 

= f(xx)t xz = 

9* Same problem for the cylinders 

F(xi, %%) = 0, G{x\> x%) = 0+ 

What are you assuming about the functions F and <7? 

10. Illustrate Exercise 9 by the first curve of Exercise 5 at the point 

ft, 1, 1)* 
11* Find the arc length of the curve of Exercise 8, 

12. Show that the components of the tangent vector to the curve 

F(zu ars) “ 0 
G(xh x2f xz) = 0 

are proportional to 

d(Ft G) d(Fs G) S(Ft G) 
#s) d{xh xi) d(xh x$ 

if these are not all zero. 
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Hmt: Assume that the given equations can be solved for two of the 
variables and use Exercise 8, 

13. Illustrate Exercise 12 by the curve 

£* + 3x$ + 2x\ = 9 

Zi + x\ + x% = 6 
at the point (2, 1, ]). 

14. The curve 

Xi = t*, Xt = tl, xz = t* 

has a singular point at the origin. Find the direction of the tangent line 
there, 

16. Is the parameter l the arc for the curve 

Xl = VpTa + t 
Xi = 

VF+4-t 

x3 = V2 log ~ *' 4-+J? 

§2. Osculating Plane 

A tangent plane to a space curve at a point is any plane containing 
the tangent line at the point. In general, there is one of these planes 
that is closer to the curve than any other. It is called the osculating 
plane. e proceed to make these ideas precise. 

2.1 Zeros, Order of contact 

Let <p(s) t C". 

Definition 2. <p(s) has a zero of order n at s — s0 4_y 

=0, k = 0, 1, - * ♦ , IP1, 
<P(n)(&o) 9* 0. 

1 

For example, sin s has a zero of order 1, (1 - cos s) has a zero of order 
2 at « — 0. By use of Taylor’s theorem with the Lagrange remainder, 
it may be shown that p(s) has a zero of order n at s = s0 I_> 

lim = A, 
(s - sa)n ' 

where A is a constant not zero. 

Definition 3. A curve x = x(s) and a plane (X - a[7) = 0 have 

contact of order n at a common point a = x(«0) <—y the distance <p{s) 
from a point s of the curve to the plane has a zero of order n + 3 at s = s0. 

We say that the contact is of order greater than n if, and only if, 

e>w(so) =0 k = 0, 1, 2, - • ■ , n + 1. 

DIFFERENTIAL GEOMETRY 77 Ch. HI §2.21 

Here we do not determine the precise order of contact by determining the 
exact order of the first non vanishing derivative. In fact, if <p(s) = s6''*, 
then $s'(0) — 0, <^"{0) = °o, and there is no precise order of contact. 
We may say, however, that the order of contact is greater than zero. 
We do not define fractional orders of contact. 

Example A. Find the order of contact between the helix 

xi = cos (s/\/2), xi = sin {s/\/2), x3 = t/v^, 

and the plane s« = x3. They intersect at (1, 0, 0), 
where s = 0. But 

<p(s) = 5-^ sin — 
2 V2 V2 

m = p'c o) = /'(o) = 0 
^'"(0) * 0. 

The zero is of order three; the contact, of order two. 

2.2 Equation of the osculating plane 

Definition 4. A tangent plane to a curve which has contact of order 
greater than unity with Ike curve %$ called an “osculating plane!1 

Let us now determine the equation of the osculating plane to the 
curve. 

(1) X = x(s) 

in a case in which it is uniquely determined. 
Theorem 3, 1. 3i($) t C2 i - 1, 2, 3 

2, xfxtf t* 0 at s — so 
- > 7Vie curve (1) has a unique osculating plane at the point 

s — sp. Its equation is 

(2) (X - zx* x") - 0. 

The vectors x, x\ x" are formed at 5 — sQ} so that equation (2) can 
also be written as 

Xi — ^i(So) 
Xa — Xa(«o) 

Xa — £a($o) 

x[(s0) 

4(^o) 
xS(s0) 

$(**) 
x”(h) 

XZ (*o) 

- 0. 

The distance from the point s of the curve to the plane 

(X^zMt) “ 0 
is 

„(,) * ± {U)_~ xjs^y) 
\/y\y 
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Hence, 

± Vyy /(eo) = (i'Cso)!?), ± Vyh<p''(s0) = (*"(s0)|t)- 
Now if 

(3) (*'(«o)|7) = (*"(3o)|7) - 0, 

<p(s) will have a zero of order greater than 2 at s = sa. But the 
direction of the normal, 7, is uniquely determined by equations (3). 
It is the common perpendicular to the vectors x'(so} and *"(sa). Thus 
there is a unique tangent plane having contact of order greater than unity 
with the curve at s = s0- It is the osculating plane and its equation 
is (2). 

Example B. I. he helix oi Example A has the osculating plane at 
(1, 0, 0) with equation 

X, - 1 
0 

-1/2 

Vi e saw in Example A that this plane has contact of 
order 2 with the curve. 

2.3 Trihedral at a point 

^ eac^ Point of the curve (1) are associated three mutually 
perpendicular unit vectors a, 0, 7. They are determined as follows: ’ 

a - 0 „ _ = y = 
Vx”(ts)\%"(a) Vx"(s)\x”(s) 

Direct computation shows that 

(«[0) = (0\y) = (y[«) = 0, (a[a) = (0\0) - (7I7) = 1 

“ = py> 0 = 7«, 7 = <x0 (a$y) = 1. 
One has only to make use of the identities 

{*'1*') = 1 (x'j*") 3= 0. 

The vectors «, 0, 7, in that order, have the same disposition as the axes 
*1, *2. xa. They are called the tangent vector, principal normal vector 

a , the ^normal vector, respectively. The corresponding indefinite 
straight lines through the point are the tangent, the principal normal, 
and the binormal, respectively. The principal normal lies in the osculat¬ 
ing plane, the hi normal is perpendicular to it. 

1 he faces of the trihedral arc the normal plane, the osculating plane 
and the rectifying plane. The last plane is a tangent plane containing 
the binormal. 
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Example C. For the helix of the previous example we have at 

(1, 0, 0) 
Tangent vector a: 0, l/V^, 1/^/2 
Principal normal vector 0: — 1, 0, 0 

Binormal vector 7: 0, — (l/\/2)i l/'x/S 
Normal plane: Xt + Xz — 0 
Osculating plane: — Xz — 0 
Rectifying plane: Xi = L 

For the curve x = %(i), where i is no longer the arc length it may 
be shown that 

, mw - <*vv T = _ 
a y/x'\x' VVjz' \/X,Xri\xrxr' ■\/z,x”\%'x" 

EXERCISES (2) 

1. Show that the osculating plane to the curve x = x(t), where t 

ia not the arc, has equation (2) with s0 replaced by f0. 

2. Find the osculating plane to the twisted cubic at an arbitrary 

point* 

3. Same problem for the curve 

Xi ~ cos fj x* — sin tf Xz = sin L 

4. Same problem for the curve 

Xi = 2 sin21 Xt — sin 21 xz — 2 cos L 

5. Same problem for the curve 

3% -j- x| = a2, 2x\Xz — OrXz* 

6. Find the order of contact of the twisted cubic 

x\ = if x2 — t*j xz - P 

with each of the three coordinate planes* 

7. Find the order of contact of the curve 

xz = x\ x\ = 1 — Xz 

with its oscillating plane at the point (1, 0, 0)* 

8. Show that the osculating plane of a plane curve is the plane of 

the curve* 
t 

9. Prove that a curve, all of whose osculating planes are parallel 

to a fixed plane, is a plane curve. 

10. Find a, 0, y for the curves of Exercises 3 and 4. 
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11, Find a, 0, y for the curves of Exercises 5 and 6. 

12- Prove formulas (4). 

§3, Curvature and Torsion 

. The notion of the curvature of a plane curve is familiar. It is essen¬ 
tially the rate at which the tangent line is turning. It is natural to 
replace this single quantity by two others for a space curve The first 
will be called the curvature and is a measure of the rate at which the curve 
is turning away from its tangent line at a point; the second is called the 
torsion and is a measure of the rate at which the curve is twisting out of 
its osculating plane at a point. For a plane curve the torsion is zero 
and the new notion of curvature reduces to the old. 

3.1 Curvature 

Let us consider a space curve with equation 

(!) x = x(s), 

the parameter a being the are. 

Definition 6. The curvature of the curve (1) at the point s0 is 

b = lira —, 
ft A#—»0 A& 

where Ad is the angle between the tangents at the points s« and s, + As. 

Example A. Find the curvature of the circle 

Q . $ 
#1 = —= ism -t 

V2 a 
_ _ a - s 
X2 — --= sm -y 

V2 a 3^3 “ Cl COS —f 
a 

The tangent vectors at points s„ and sa + As are 

V"2 C°S a’ C0S a’ ~ sin a 

so that 

cos A$ = cos — cos — + sin ~ sin + — 
® ® Or a 
As 

= cos 

Hence, 

a H a 

and the curvature is constantly equal to the reciprocal 
of the radius. 
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• * 19 2, <3 Theorem 4. 1. Xi(s) z Cs 

- > The curvature of the curve (1) at the pmnl s0 in 

i = . 
it [*~1q 

For, the tangent vectors at s0 and $q + As are 

a — x'(sq) a -I- Aa = xf(s0 + As)t 

go that 
cos A0 — (a|a + Ao;) — l + (a|Aar). 

Since the parameter is the arc, a and a. + Aa are unit vectors. Hence, 

(a + Aa\a + Aa) = 1 -J- 2(<*jAa) + (AajAd) — 1. 

Consequently, 

2(1 - cos AO) = (&4&A 
As2 \As[ As) 

1 fda\da\ _ / ,,I m 
W = \ds\ds) ” {x 

and the proof is complete. Observe that the principal normal vector 

may now be written ff = It xtf. 
In Example A, we have for the vector x” the components 

1 s 1 • $ 1 $ 
— sin —9 — --- sin ? — cos 

a V 2 a a V 2 a a a 

Hence, 

i-VSTP-i 

3.2 Torsion 

Definition 6. The torsion of the curve (1) at the point so is 

I . v A*> ™ - ± hm —> 
T Ar-*Q A® 

where Atp is the angle between the osculating planes at. the points sn and 

+ As. 
The sign is left undetermined for the present. 

Example B. Find the torsion of the helix, 

Xt ~ cos 
V2 

= sm 
V2 

Xu 
s 

V2 

at the point 8 « 0. The components of the vector 7, 
normal to the osculating plane, are 

1.8 1 8 1 
— sin —? “ ” — cos ,—1 /— * 

V2 V2 V2 V2 y/2 



(3) (/|/) = (t[^)2. 

For, 

^ = w' = Wr> - (<Wt = («'Mt = i 03|T)T = o. 

Here we have used the relations 

(I'M - 1, (t|t') - 0, (a|T) = 0, 

Mr') + M|r) =0, «' = 4* 
/c 

Since the vector £y' is a null vector, its length is zero: 

WW) = (r'M) - Mr')2 = (/)/) - 03'[7)2 = o. 

Here we have used the fact that 

Mr) -=■ o, (rM + cel/) = o. 
Since 

r - jRzV', 0 = Sir", 0' = ieVJ + flz'", 
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we have from equations (2) and (3) 

i = ±R(xr£”\R'x" Hr Rx"’) 

(4J = ±B*(® W") = ±{zV'0/(x"!®"). 

Finally, we complete the definition of the torsion by choosing arbitrarily 

the negative sign in equation (4). 
To compute the torsion of the helix of Example B by Theorem 5, 

we have 
1 

Va 
0 

1 
2 

0 - 

0 

1 

1 

V2 

0 

= 0 

1 
2 

2 V2 

EXERCISES (3) 
1. Compute l/R for the helix of Example B at s = ir/2 directly 

from the definition. Check by Theorem 4. 

2. Solve the same problem for 1/T, checking by Theorem 5. 

3. Show that the curvature of a helix is constant. 

4. Solve the same problem for the torsion. 

5. For the curve x = x(t), show that 

1 

i 
VsV'Is'x" 

6. For the curve z = z(f), show that 

1 (®VV") 
T = {x'x”\z’x") 

7. Show that the torsion of a plane curve is zero. 

8. Reconcile the present formula for curvature with the familiar 

one for a plane curve. 

9. Find 1 /R for the twisted cubic, 

10. Work out the same problem for l/T. 

11. Show that a curve is a straight line <—► l/It = 0. 

12. Show that a curve (not a straight line) is plane i—> t/71 - 0. 

§4. Frenet-Serret Formulas 

These are three equations expressing the derivatives of the vectors 
a, j£f, 7 with respect to s as linear combinations of a, 0, y. They are of 
fundamental importance in the theory of space curves. 
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4.1 Derivation of the formulas 

°ltbe ™ have CSScntiallY obtained in the previous 

S ‘°“ °' “ “ *“d «“ '“■»»<* the 

« = Z'(5) 

ft- *"M 

da 

ds 

da 

ds 

= *"W 

= P v^v = J. 
it 

Since (y'\y) ~ (7» = 0, the vector y' is parallel to ft 7' = kp. Since 

Finally, 

("tl^ ) (t I&)> the scalar h must be -j,i and we have 

dy = p 

ds T 

dp _ d ^ "> , /T 
ds ds ^ n f a ~ 

a y 

E~T 

2Z*~ f°rmulaa are more easiIy remembered when put in the 
ioUowmg arrangement: 

da 
ds 
d£ 
ds 
dy 
ds 

+1+ 
* 

« + * _ 

* + | + 

T 

4.2 An application 

By use of the Frenet-Serret formulas, one may obtain the Tavlor 
expansion o ^ e vector *(«), the coefficients in the series being expressed 

m terms of ^ f and their successive derivatives with respect to s and 

in terms of a, ft y, F0r, 

Thus, for the development about a = 0, we have 

(1) *(8) =*(0) +<* + £ £ + 2.+ (l\a T \ s* 
R21 \ & + \RJ Rt) 3! + * * * • 

Here a, p, 7j i, 

To study the usual form of a curve at an arbitrary point f.’let Us 

Hi are all formed for s = 0. 
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choose our system of coordinates with origin at P and with the positive 
xr, in and 2r3-axes coinciding, respectively, with the vectors ct, ft y 

formed at P. Then 

a: 1, 0, 0; p: 0, 1, 0; 7: 0, 0, 1. 

The vector equation (l) becomes the three equations 

(2) 

Zi(b) = 8 + * — + * * * 

*,w = *+ h + (s) i + 
jo 3 

Xx (s) = * + * 
6 RT 

+ 

If neither curvature nor torsion is zero at s =* 0, we can determine 
the behavior of the projections of the curve on the three coordinate 
planes. For the behavior very near the origin, we may neglect all 
but the first terms in the above series. The projections then are 
approximately: 

(a) x2 ™ ^ in the osculating plane, 

lb) 

(o) 

X3 

2 R 

- — in the rectifying plane, 

x% - 
2R 

9T2 
in the normal plane. 

We graph these curves in character in Figure 6. 

x* -x* 

Fig* 6. 

The sign of the torsion was chosen arbitrarily in section 3. The choice 
was made simply to produce symmetry of sign in the Frenet-Serret 
formulas* We can now interpret the meaning of the sign* As a point 
moves in the direction of increasing s, the curve cuts through the osculat¬ 
ing plane in the direction of the vectors y or — y according as T < 0 or 

T > 0* 
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i t? „ EXERCISES (4) 
1. For the helix 

s 
■— sin —j 

V2 

compute a, 0, 7, a', 0', y', 1/R, 1/T at an arbitrary point without use 
of the Frenet-S arret formulas. Then verify the formulas for this special 
curve. 

2. The helix 

*1 = 0 cos t, x% = a sin l, xs — bt 

is right-handed or left-handed according as it resembles the threads of a 
light-handed or left-handed screw. Distinguish the two cases by the 
sign of b. Compare the sign of T in the two cases. 

3. Express ri!(s) and a;W(s) as linear combinations of a, 0, y, 

4. In equations (2) suppose that I/(RT) ^ 0. Find the order of con¬ 
tact of the curve with the three coordinate planes. 

5. 3% use of the Frcnet-Serret formulas show that a curve whose 
curvature is identically zero is a line. 

, 6> Tlle center of curvature of the curve x = s(s) at a point s„ is the 
pomt x(sn) + 0t>ft0, where 1/R0 is the curvature and 0D is the principal 
normal vector at the point s0. Show that the locus of the centers of 
curvatures of the helix of Exercise 1 is another heli^ 

7. Show that the center of curvature of the space curve (2) is the same 
as the center of curvature of the parabola (a). 

8. Reconcile the definition of center of curvature given in Exercise (i 
ivith the familiar coordinates for the center of curvature for the. plane 
curve y = f{x): 

X = x - /'[i + cm 1 +r 
r ' 

9. Write the equations of the six elements of the trihedral at t = 0 
for the curve 

an - 1 + sin t, x2 = tel - 1, x3 = log (1 4. t). 

§5. Surface Theory 

We give next an introduction to surface theory. There arc; three 
important ways of representing a surface: 

^ *3 = f&i, £2) 
^ F(%t, x2, Xi) = 0 

W x = x(u, a). 
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Equation (3) is, of course, a vector equation, and u and 11 are parameters 
corresponding to the two degrees of freedom on a surface. Fot example, 
u sphere of radius p with center at the origin may be represented in each 

of the three ways:_ 

£3 = V? - — A 
x\ + x\ + xt — P2 - 0 

(4) x\ — p cos ^ cos di x* = p cos u sin n, — p sin u. 

rrhe first, equation represents only half of the sphere. In the parametric 
representation the parameters u and v are latitude and longitude, 

respectively* 

5.1 The normal vector 

Let us find the normal vector to the surface (3) at a point {u0J vn). 

The equation 
x = x{uf Vq) 

represents a curve on the surface through the point* Tn the above 
example of the sphere, it is a meridian. The tangent to this curve at the 
point has direction components equal to the components of the vector 
Xu(uoj vq), where the subscript u indicates partial differentiation with 
respect to u. Also the tangent to the curve 

x = x(uq7 v) 

at the point vf) has direction components equal to the components 
of the vector xv{uQ} vq). The normal to the surface is the common 
perpendicular to these two tangents* We define the normal vector f as 
a unit vector along tliis normal with such a sense that the three vectors 
Xu, xv, f will have the same disposition as the axes* We thus have 

r - 
xux» 

ZuX « \XuXv 

whenever the denominator is different from zero* It cannot be identically 
zero for a bona fide surface and can only vanish at singular points of the 
surface* (See §4.2 of Chapter IL) We state our result as a theorem* 

Theorem 6. L v) z C1 i = 1, 2, 3 

—4 The normal vector to the surface (3) at the point (ua, ^o) is 

r = X^Xu 

%uXv\ 

If the surface has equation (1), then we have 

f'i.Xij £2), *^2 “ x2i xi = Xi, 
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so that u == xit u = Then 

Vi 0, fi 
xv: 0, 1, /2 

5 515 ■ VT+/?+/*, 

If the surface has equation (2), then 

r' ~DJ T>* 7> D " VFTTf IT n 
5,2 Tangent plane 

It is now easy to write down the equation of the tangent plane to a 
surface. IV e have for the surface (1) at a point (a, 6, /{a, 6)) 

Z3-/(a, b) = fi(a, b)(xt - a) + ft(a, b)(z« - b). 

At a point (ai, a2, a3) of surface (2) the tangent plane is 

(* - o|VF) = 0, 

where VF is the gradient of F at the point, 

VF. Fi(a%, a«, a3), Fs(alt as, as), F*(ai, as, a3). . 

Finally, the tangent plane to the surface (3) at (w0, i>o) is 

(x — a zu x.) = 0, 
where 

a = x(ua, vo), xu = xu(uo, vB), xv = x,(un, p0). 

5.3 Normal line 

The normal line to surface (1) at the given point is 

*i = a+ /j(a, b)t 
*2 = b + fi(a, b)t 
x* = f(a, b) - t. 

The normal to surface (2) is 

x — aVF — 0, 

where a and VF are the vectors «* «*, a, and Ffa, a,, a3), F3(ah a* at), 

Fi(au a2, a,). Finally, the normal to the surface (3) at («„, Vo) js 

5.4 An example * " *** 

As an example of the use of some of the foregoing results, let us show 
ocular cone with vertexat the origin culanyaphSSToX 

at the origin orthogonally all along their curve of intersection. The 
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aphere has equations (4). The cone has equations 

(5) = u cos a cos Vj #a = to cos a sin vt Xi — te sin a. 

If u = a in equations (4) and u = p in equations (5), the two sets of 
equations are identical and represent the circle of intersection. At any 
point on this circle, we get by simple computation the normal vector 

for the sphere 

f: — cos a cos vt — cos a sin tf, — sin cl. 

For the cone along the same circle 

f: — sin a cos v, — sin a sin v, cos a. 

Since (£|f) — 0, our result is established. 

EXERCISES (5) 

1. Write parametric equations for a right circular cone and show that 
the normal vector is the same all along the straight lines of the cone. 

2. A circular cylinder has radius a and has its axis along the rr2-axis. 
Find the equation of the tangent plane at the point (a/2, a V2/2, 
a y/Z/2), using all three forms of the surface: (1), (2), (3). 

3. A curve a:* = f(xi) in the ziza-plane is rotated about the 23-axis. 
Show analytically that the normal lino at any point of the resulting 
surface of revolution either intersects the 23-axis or is parallel to it. 

4. Show analytically that the normal vector at a point of a sphere 

has the same direction as the radius to that point. 

6. Write the equation of the normal to a torus at an arbitrary 
point. Show that it intersects or is parallel to the axis of the torus. 

6. Show that the spheres 

(2I2) = 1 (2 — a|i - a) = 1 

intersect orthogonally if, and only if, (et'a) = 2. Interpret geometrically. 

7. Find a condition that three surfaces in the form (2) should have a 
common tangent line at a common point of intersection. 

8. At what angle does the curve 

2| as Xl, x\. — 1 — 2l 

intersect the surface 

62! + 32s! - 2x1 = 9? 

9. Find the angle between tangent planes to the surfaces (1) and (2) 

at a common point. 

10. Solve the same problem for the surfaces (2) and (3). 
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§6. Fundamental Differential Forms 

. £* w® s^a'l introduce two differential forms which are 
u l • “T C° m the characteristics of a surface 
and the behavior of curves on the surface. As an example of their use 

s'urfaceU dlSCUSS the curvature of a normal cross section of a 

6.1 First fundamental form 

Let us take the vector equation 

(t) x = x(u, v) 

as the representation of the surface. A curve on this surface will be 
determined by a single relation between u and v, 

F(u, V) m 0 

or 

V = f(u). 

The direction components of the tangent to this curve, 

* = /(«)), 

mil be the components of the vector 

z- + x.f. 

For the arc length s of the curve, we have 

ds1 
du* ~ ^ + Xvflx, + xj') = (z„\xu) + 2(xu\x.)f + (xT\xt)f\ 

If the curve is in .he form (2) with neither variable preferred, we write 

since ***" " + 2(*.(an)dndr + (t.|*,)das. 

Fudu + Frdo = 0, 

we could easily compute g or * from equation (4). 

Definition 7. The first fundamental form of the surface (1) is 

(dx\dx) = E du2 + 2Fdu dv + G dv2 
where 9 

B = W*). F “ (*-!*.), G = (x,\xv). 

6.2 Arc length and angle 

Equation (4) permits one to compute the arc length of a curve on a 
surface. For example, the length of the curve (3) between points (ua, „0) 
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and (tti, ri) is 
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/wo 

91 

The first fundamental form also enables one to compute the angle 0 

between two curves on a surface. For example, if the curves are (3) and 

then 

cos 0 = 

v = g(u), 

(in + xef\xu + xTg') 

V+ Xvf'\xu + xvf y/xu + Xvg'\xu + x*g' 

E + Ff + Fg' + Gfg' 

(5) VE + 2Ff + G{f')- VE + W + WT* 

Example A. Let u and v be longitude and latitude on a sphere. 
IT';urtfrln rtf Mrrnnn t nn 

V — u 

cuts the equator. Choose units so that the radius is 
unity. Then the equations of the sphere are 

x% = cos v cos Uj Xu = cos v sin uf x& — sm v. 

Hence, 
E = cos* v, F = 0, G = i 

ds% = cos* vdu1 + dv*. 

For the angle $ at the point u — v — 0, we have by 

formula (5) 
fW = u, g(u) = 0 

cos $ = l/\/2| 0 = ir/4. 

6,3 Second fundamental form 

Definition 8. The second fundamental form, of the surface {1} is 

—(rforlrff) - e du* + 2fdu dv + g dv* 

where 

e = = 9 ^ 

Here f is the normal vector defined in §5.1, and 

df = fu du + fvdv. 

From the relations 
(t\xu) = 0, (f|&„) = 0, 

we obtain by differentiation 

The two expressions given for / in Definition 8 are seen in this way to 
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be equal. We have also obtained new expressions for e, f, g in terms 
of the vector x(u, v) and its derivatives: 

e = D (Xuu Xu X^> f = 5 (*“» ** *»)j 9 = £ (a:** av) 

i) = = VW — 771. 

6.4 Curvature of a norma! section of a surface 

At a point of the surface (1), draw a normal plane. It will cut the 
surface in a normal section whose equation we assume to be 

v — sp(u)> 

The tangent vector of this curve is and since this is orthogonal to 

the normal vector f, we have 

(glr) = <«lr)-°. 

Differentiating with respect to « and using the Frenet-Serret formulas, 
we obtain 

s«>+(S 
where 1/It is the curvature of the normal section. Since the principal 
norma! 0 lies in the osculating plane (here the plane of section), 0 = ±t 
and 

(6) i = f W#) „ + ±+W_±0WY 
R {dx\dx) ~ M + 2F<p' + G{tp'y 

The derivative <p'{u) might be regarded as a generalised "slope” defining 
the direction at which the curve leaves the point in question. The 
curvature of the various normal sections of a given surface at a fixed 
point depends on this slope, as is indicated in formula (6). Replace 
<p' by X and choose arbitrarily the positive sign in equation (6). The 
resulting quantity is called the normal curvature 1/r of the surface at the 
point in question in the direction X; 

A _ e + 2/X + gX2 
r E + 2F\ + G\2' 

Example B. Find the normal curvature of the paraboloid of revolu¬ 
tion 

ds :)-o, 

Xj =» r cos 0 Xi = t sin 9 » 

at the point 0 = jr/4, r = t. 

I - r1 
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Xrl 

Xt'- 

%rr* 

XrQl 

xee: 

cos 0, sin 8, —2r 

— r sin 9, r cos 9, 0 

0, 0, -2 

— sin 6, cos 0, 0 

— r cos 9, —r sin 9, 0 

_U, 1 , 2 
V2' V2 

_ J._1_, 

’ V2 V2 
0, 0, —2 
J_1_ 

‘ V21 V2: 
J_1_ 

* V2 V2 

0 

0 

0 

E = 5, 

e = 

Hence, 

F - 0, G = 1, 

^ / - 0, g = 
Vo 

D = x/5 
-2 

l = -2 - 2X- 

r “ V5 (5 + X5)' 

It is easy to determine the maximum and the minimum 
values of the normal curvature. In the present case, 

they are found to be — 2/53/2 and — 2/\/o, correspond¬ 
ing to X = 0 and X = <*>, respectively. The product 
of these two, 4/25, is called the total or Gaussian 
curvature at the point. The sum of the maximum and 
minimum values of \/r, here — 12/53/J, is called the 

mean curvature. 

EXERCISES (6) 
1. By use of equation (5) show that on a sphere a circle of latitude 

cuts a meridian orthogonally. 

2. The curves u = «0 and v = va on the surface (1) intersect ortho¬ 

gonally if, and only if, F = 0. 

3. Find e, f, g for the sphere of Example A. 

4. Show that the normal curvature of a sphere is constant. 

6. What are the mean and total curvatures of a sphere ? 

6. In Example B, show that the normal curvature of the paraboloid 
at the point 9 — it/A, r = 1 in the direction of the curve 0 = it/4 is 
numerically equal to the curvature of the generating parabola at the 

appropriate point. 

7. If for a surface / = F = 0, show that the total curvature is 

8. Find E, F, G, e, f, g for the hyperbolic paraboloid 

an = a(u + v), x% - b(u - v), x3 = uv. 

9. Find the Gaussian curvature of the hyperbolic paraboloid. 
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§7. Mercator Maps 

By way of illustrating the uses of surface theory, we will discuss briefly 
the geometry of curves on spheres and cylinders. Wo shall compare 
analytic geometry on a sphere with plane analytic geometry by placing 
corresponding formulas side by side in parallel columns. Finally, we 
shall set up a Mercator map. This is a method of representing the points 
of a sphere on a cylinder of equal radius in such a way that the angle 
between intersecting curves is preserved. Since a plane map of cylinder 
can easily be made by cutting the cylinder along a ruling and unrolling, 
one obtains then a conformal (angle preserving) plane map of the sphere! 

7.1 Curves on a sphere 

Let <p, 0 be latitude and longitude on a sphere of radius a, the meridian 
of Greenwich, 6 — 0, lying in the plane. A parametric representa¬ 
tion of the sphere is 

(1) ij — a cos <p cos 6, Xi = a cos <p sin 6, x3 = a sin <p. 

We now make a table of corresponding formulas for plane and sphere. 

Plane 

Coordinates. 

Parametric curves. 

z - £$ is a parallel to the y-axis. 
y — Vg is a parallel to the x-axis. 

Sphere 

& = is a meridian, 
^ is a circle of latitude. 

Arbitrary curves, 

V = }{x) or 

A rc length, 
ds2 dx* -f dy2 

Slope♦ 

F{x, y) = 0 <P = f{&) or F(0, ip) = 0 

ds2 = aHtp2 + a2 cos2 p dd2 

i dx c os w — ,_ — == ~ 
Vi + in2 ds 

tan w 

cos w 

/'(g) s_1_d<p 
cos f(6) cos p dQ 

cos / de 

Vcoay+(/»)*-0008 *5 

Rhumb lines. A rhumb line or loxodrome on a sphere is a curve that 
cuts all meridians at equal angles. We can easily obtain its equation by 
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solving a differential equation. 

dy . v 1 d<p 
tan toe = X = ^ tan w» - X - d9 

y = \x + C log tan = X0 + C 

We make several remarks about the above formulas. The first 
differential form for the sphere was obtained in the previous section. 
It may be obtained directly from equation (1) by use of the identity 

ds2 ~ (da;|da:). 

Along a meridian, s = a<p. 
To obtain the angle w between the curve ip = f(6) and a circle of 

latitude, we find the tangent vectors of the two curves: 

xi = a cos f(9) cos 8, x3 = a cos f(d) sin 8, xt = a sin f(8) 
yt = a cos <pa sin 8, 1/2 = 0 cos pa sin 9, y> = a sin pa. 

Then 
W) 

cosw~ ViVvW' 

Observe that on the equator the formulas for ds and for w are the 
same in the two columns. The analogy between the equation of a 
loxodrome on a sphere and a straight line in a plane may be seen by noting 
that the first term in the Maclaurin expansion of log tan (ip/2 + tt/4) 

is precisely ip. 

Example A. A ship sails from equator to pole, always keeping 
latitude equal to longitude. How far does it go? 

The result is 

s — Jds = a ~ a/1 + cos4 (p d<p 

= a V2 for/Z VI ~ (1/2) sin2 p dp 

This integral cannot be evaluated in terms of the 
elementary functions. But it is a well-known “elliptic 

integral.”* We find 

a = a V2 E(k) k — —L sin-1 k = 45° 

a = o V2 (1.3506) = 1.91a. 

* See formula 525, and page 121 of Short Table of Integrals by B.O. Peirce. New 
York: Ginn and Company, 1929, 
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7.2 Curves on a cylinder 

Consider a circular cylinder which is tangent to the sphere (1) along 
the equator. Choose as parameters the same angle 8 as for the sphere 
and * - the absolute value of which is the distance from S 

m question to tho plane of the equator. The parametric equate are 

® “ 0 cos Xt = a sin 8, Xi = z. 

Parametric curves. 

8 - Ouis a ruling or generating line of the cylinder. 

2 = is a circle whose plane is parallel to the plane of the equator. 

Arbitrary curves. 

Arc length. 
s = f{9) or F(6t z) » 0 

ds* = aW + dz* 
Slope. 

tan w = 

cos w — 

f(B) = Idz 

a a d$ 

_Q_ = _ ad$ 

Vaa + (f)* y/d& + tfde- 

7,3 Mercator maps 

to (0’ the sphere (1) correspond 
to the point Q, (8, z), of the cylinder (2) in such a way that the Ingle 
between two arbitrary curves on the sphere will bo the same as the angle 

between corresponding curves on the cylinder. Since 8 has the same 

function of r.ep"eseiltations* wc ha™ only to determine a as a 

rXfs -fl V 7if ' mSinCC meridian d = is transformed into 
n 9*> li wlU !f sufficient to consider the angle between a single 

curve on a sphere and a meridian. Thus, the slope must be preserved 
from sphere to cylinder. That is, we preserved 

1 dtp _ I dz 
cos <P (10 ~ a d$' 

255! CqUati011 Cftn ”0W * SOlVed for the faction 

z=alog tan (f + + C. 

T Tke theequat°^ corrcsPond to the circle z = 0, we have C = 0 
Thus, the map is completely determined. For example a nnint ™ *k ’ 

point'V-^/ff1lnTS\ Utitude 3°° wiU be transformed to the 
m3 tZ ’ u =i (a/2 .ios 3 = -549 «• To obtain the plane map we 
must now unroll the cylinder. We then obtain a plane and we Jy 
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choose coordinates x, y so that 

x — aO 

y = z = a log tan + 

In this plane, the above point will have coordinates (.7S5a .549a). The 
plane can, of course, be reduced in scale by dividing all coordinates by 

a, for example. 
EXERCISES (7) 

1. Find integral formulas for the lengths of the curves F(B, ip) — 0 
and F{Q) z) on the sphere and cylinder, respectively. 

2. Find the “slopes” (tan w) for the curves of Exercise 1. 

3. Prove the formula for cos to given in the text for sphere and 
cylinder. 

4. Solve the same problem for tan w. 

5. Find the length of a spherical loxodrome from pole to pole, 

6. Develop a theory of curves on a cone, as was done in the text 

for a sphere. 

7. Define a loxodrome on a cylinder and find the length of one 

revolution, 

8. Solve the same problem for a cone. Specify which revolution 
you are considering. 

9. A curve 0 — <p is transformed by Mercator projection. Find 
the equation of the transformed curves on the cylinder (0, z) and on the 

plane far, y)< 

10. A ship sails north-northeast from the point 8 = 45°, tp — 15°. 
Find the equation (in x and y) of its path on the Mercator map. 

11. Find the angle between the curves 0 = = 2 — 02 on a 
sphere at points of intersection. Find the angle between the correspond¬ 
ing curves on the Mercator map at points of intersection. 

12. Central projection is defined as a transformation which carries 
a point P on the sphere (I) into a point Q on the cylinder (2) in such a 
way that the line PQ passes through the center of the sphere. Show that 
the transformation is not conformal by consideration of a curve on the 
sphere which passes northeast from the point 8 = 0> <p — ir/4. 



CHAPTER IV 

Applications of Partial Differentiation 

§1. Maxima and Minima 

In this chapter we shall discuss certain applications of partial differ¬ 
entiation. We shall be concerned principally with the determination 
of the maximum and minimum values of functions of several variables. 
We shall revert to the more familiar notation (x, y, z) for the rectangular 
coordinates of a point in three dimensional space. In the present section 
we shall review the facts about extreme values of a function of one 
variable in order to have a basis for generalization to higher dimensions. 

1.1 Necessary conditions 

\\ e recall first that the vanishing of the first derivative of a function 
of class C'1 is a necessary condition for a maximum or a minimum of the 
function. If the existence of one or the other is known independently, 
this condition is usually the practical one for the applications. We 
state the result in the following form. 

Theorem A. 1. /(i)eC‘ a £ x £ b 

2. f(a) < /(c) >/(!>) for some c between a and b 

-► There exists at least one number X (a < X < b) suck that 

A. fix) £/(X) a^x^b 
B. f'(X) = 0. 

Condition 2 insures that the graph of f(x) is "low at the sides and 
high in the middle.” Hence, the function must have a maximum value, 
taken on at one or more places between a and b. The result is thus 
obvious geometrically. The analytic proof is veiy similar to that of 
Rolle's theorem, and is not repeated here. Observe that the function 
1 — |z| has the maximum value 1, taken on at x = 0. But Theorem A 
does not apply since the function is not of class CK 

Example A. f(x) = 12s2 - 4a;3 - 3x* ~3 ^ x ^ 2 
/(-3) = ~27 </(0) = 0 >/(2) = -32 

f'(x) = 12x(l - x)(2 + x) 

Hence, X must be one of the numbers 0, 1, —2. 
Since 

m = o, /(1) = 5, /(—2) = 32, 
98 
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it is clear that X — — 2 and 

f(x) £ 32 -3 £ x S 2. 

In fact, it is easy to see that this relation holds for all x. 

1.2 Sufficient conditions 

By use of the derivatives of higher order, we may obtain sufficient 

conditions for a relative extremum. 

Theorem B. 1. fix) eC!» a£x£b 
2, f>(X) =0 fc = 1, • • • , 2n — 1; a < X < b 

3. /tSHl(A) < 0 

—4 There exists a positive number t such that 

fix) < fix) 0 < \x - X\ < e. 

The conclusion is that f(x) has a relative maximum at X. By 

Taylor’s expansion, we have 

a) . m 
where $ is between x and X. As x approaches X, f does also, and (E) 
approaches a negative number by condition 3. Hence, for all * ^ X, 
sufficiently near A', the right-hand side of equation (1) is negative, and 
the result is established. The theorem is easily modified for relative 

minima. 
This theorem is particularly useful for n = 1, for then two deriva¬ 

tives only need be computed. Tn Example A above, 

f ix) = 12(2 -2x - 3s2) 
fit) = -36, /"( —2) = -72, /"(0) = 24. 

Hence, fix) has relative maxima at x = 1 and x = — 2. It has a relative 
minimum at x = 0. It is easy to see that the absolute maximum is at 
x = — 2. The absolute minimum in the interval — 3 £ x ^ 2 is/(2) = 
-32. There is no absolute minimum in the infinite interval — °° < x 

< so, 

Example B. fix) = 1 — x* 
x = 0,/(6)(0) = -6! 

The relative (and absolute) maximum is/(0) = .1. 

Example C. f{x) = ^ -2£zS2 
This function has a relative minimum /(0) - 0, a 
relative maximum /(4/5) — 44/56, an absolute mini¬ 
mum /(2) = —16 and an absolute maximum /( —2) 

= 48. 



Ch. IV 52.1] APPLICATIONS OF PARTIAL DIFFERENTIATION 101 fCK. IV 51.3 100 APPLICATIONS OF PARTIAL DIFFERENTIATION 

1.3 Points of inflection 

A point of inflection of a curve is a point where the curve crosses its 
tangent. \\ e can obtain a derivative condition for such a point. 

Theorem C. 1. f(x) e CSn« „ ^ ' 

2- /"’TO - 0 * = 
3. /<**+» (X) ^0 

> The graph of f{x) has a point of inflection at X. 
For, as in the previous proof. 

m - m - a*)<* - jo = 

The left-hand side is the difference between corresponding ordinates of 
10 cmve y — fix) and its tangent; the right-hand side changes sign as 

x passes through X« Hence, the theorem is proved. 

Example D. f{z) = z* + x + 1 

/<*>(0) = 0 
/<”( 0} = 5! 

T he graph of fix) has a point of inflection at x = 0. 

h — 2, 3, 4 

EXERCISES (1) 
Find the relative and the absolute maxima and minima of the following 

f unctions. State which, if any, of ike theorems of the text you are using. 

1. xA -4:r»-Hl 

2. (4 - x2)-™ 

3. af 

4. f* (** - tydt 

5 t^/3 
~1 Srgl. 

6. 3m(I — z)1* (tti, «. are positive integers) — m < x < w 

- Ouamammum, miniman, 

— I 

-lg*gl. 

• 1 I I s 1. 

-1 g 3 g 1. 

or point of inflection. 

T. g(I — e*) sin x. 

8. x sin x — sin1 x. 

9. x tan-1 x — x%. 

on fhn A ran fCaD W-a k ,tW1Ce as fast as he can swim- To get from a point 
on the edge of a circular pool to a point just opposite he may walk 

the ret hf S™m f^033’ °T WaIk part wa? around and swim 
make fh t ? a Stmight Une' How shaU Proceed if he is to 
make the trip m the least tune? greatest time? 

§2. Functions of Two Variables 

In this section, we shall prove a result for functions of two variables 
analogous to Theorem A of the previous section. It will provide a 
sufficient condition for the existence of an absolute maximum or mini¬ 
mum at an interior point of the region of definition. A further conclu¬ 
sion, the vanishing of the two first order derivatives at such points, will 

pro ride a means of determining their positions. 

2.1 Absolute maximum or minimum 

Definition 1. A function f{x, y) has an absolute maximum at a point 

(X, Y) of a region R <—► 

f(X, Y) S f{x, y) for all (3, y) in R. 

Definition 2. A function fix, y) has a relative maximum at a point 
(X, Y) of a region R <—> there exists a positive number 5 suck that 

/(X, Y) > fix, y) 
& 

for all (x, y) of R at which 0 < (x — X)2 ~r (y — Y)* < 5. 
Obvious modifications of the inequalities are necessary for the defini¬ 

tion of absolute or relative minima. 
For example, consider the surface, z = fix, y), obtained by rotating 

the curve z = xA - 23* about the z-axis. In the circle z2 + y1 < ± 
the function f(x, y) has the absolute maximum value 8, realized on the 
circumference of the circle. It has a relative maximum equal to zero at 
(0, 0) and absolute minima equal to —1 at all points of the circle x1 4- 
y2 = I. There is no relative minimum in the strict sense of Definition 2. 

Theorem 1. 1. fix, y) t C' in a bounded region R consisting of a 
domain D and a boundary curve T 

2. fia, b) > fix, y) for some {a, b)zD and all (3, y) e T 

_) There exists a point (X, Y) z D such that 

A. f(x, y) fiX, Y) for all (3, y) z R 
B. MX, Y) = MX, Y) = 0. 

Since fix, y) is continuous in the closed region R, it has a maximum* 
there, say at (X, F), which must be in D by virtue of hypothesis 2. Then 

f(X 4~ Ax, Y) — f(X, 1_) g. q ^ ^ q 
Ax 

gO Ax > 0. 

* Compare §6.5, Chapter V, The proof for functions of two variables is similar 

to the one given there. 
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Allowing As to approach zero, we obtain in the two cases 

MX, K) fe 0 
MX, Y) s 0. 

Hence, MX, Y) is zero. A similar argument shows that MX, F) = 0 

2.2 Illustrative examples 

Example A. f(x, y) = V4^' ** - y* x« + . s 

Choose o = 6 = 0. Then 

/(0, 0) = 2 >f(x,y) 1,^ = VS. 

Hence, the absolute maximum exists at an interior 
point (A, F). To find it, we have 

MX, F) = - X 

V4 — A8 - Y'2 
= 0 

/*(*, K) = -7 ~ K_- 0. 
VT^ A8 - Y2 

Hence, the absolute maximum for f(x, y) occurs at 
the origin where f(x, y) has the value 2. The result 
is also obvious by inspection. 

Example B. f(x, y) = 1 - Vtf~+Y x* + y*£ 1. 

Theorem 1 is not applicable since f(x, y) £ C1. But 
one sees by inspection that the function has the 
absolute maximum value 1 at (0, 0). 

Example C. f(x, y) = x + y z» + y!|L 

Here hypothesis 2 tails. The function has an absolute 

maximum at ^7^' But, of course, the partial 

derivatives of first order vanish nowhere. 

Example D. /(a V) = X* + y* ~ X2~y*+ 1 x2 + y* < *. 

To establish hypothesis 2, introduce polar coordinates: 

f(r cos 9, r sin 6) = r* (cos'1 0 + sin1 0) — A + 1. 

On the circle r = r0, we see easily that the first term 
is at least Tq/2, ITence, on the circle r = 2, 

/&8-4 + 1-S, 

and /(0, 0) - 1, so that an absolute minimum exists. 
To find it, we have 

4A3 - 2A = 0, 4F* - 2F = 0. 
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There are thus nine points where both equations hold. 
By trying all nine, we find that there are absolute 

minima at four of them (+ L) ± —where / is 
V V2 V2) 

equal to 1/2. Hence, / ^ 1/2 in all the plane. 

<* 

2.3 Critical treatment of an elementary problem 

A familiar problem requires the rectangular parallelepiped of given 
surface area and maximum volume. Let US examine it carefully in the 

light of Theorem 1. 
Let x, y, z be the lengths of the three sides. Then we must maximize 

the function xyz subject to such a condition as 

(1) xy + yz + zx = 1. 

Eliminating z, we consider the function 

f(x, y) = xy x £ °> v ^ °, X,J ^ '• 

It would be natural to choose the region R as defined by the above 
inequalities, for f{x, y) is aero on its boundary. But the region is not 
bounded. Moreover, f{x} y) is not continuous at the origin. 

Let us choose R as the region for which 

x ^ 0, y ^ 0, c g x + y g d, 

where c and d are to be determined. Choose a = h ^ 1/2. Then 
/(a, b) = 3/16. On the line % + y - h} 

(2) f = l (ih -x)-f(h- x)\ 

If 0 < h < V2, this function has a single maximum at x — A/2, where 
it is equal to h(4 — h2)/16- If h > \^2, there are two maxima at the 
points x — [k ± \fh2 — 2]/2, where / = 1/{4A), Hence, if we take c 
“ 1/2 andd — 4, we certainly have/ < 3/16 on all four boundary lines of 
f?. All hypotheses of the theorem are satisfied, and an absolute maximum 
exists. To find it, we have 

1 - X* - 2XY = 0 
1 - K- — 2XY = 0. 

from which 

The desired solid in a cube of volume \/3)/9. 
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Observe that if the existence of the maximum is assumed, it is unneces¬ 
sary to eliminate the variable z. We would have from equation (1) 

Hence, 

— = ~ y + g dz _ x + z 
dx x + y dy ~ aT-f• y’ 

d , „ Qz 
Qx (xyz) = yz + xy ^ = yz - 

d , \ * Oz (xyz) =xz + xy-}j = xz- 

xy(y + z) 
x 4r y 

xy{x + z) 

x + y 

Equating these two functions to zero, we obtain x — y = 2. Then from 

equation (1) we again see that all three dimensions must be l/\/S. To 

obtain relations between the variables at an extremum, it is often simplei1 

to use the implicit method. The explicit method may be shorter if the 

actual values of the variables at an extremum are desired. 

EXERCISES (2) 

1. Find the rectangular parallelepiped of minimum surface area for a 
given volume. Show the existence of the absolute minimum. 

2. Same problem for a rectangular tank open at the top. 

3. Show that the function 

x4 +y* ~ 2x* + 8y* + 4 = 0 

has an absolute minimum. 

4. hind the minimum value of the function of the previous exercise. 
At how* many points does it occur? 

5. Examine the function 

x4 ~ y* + x* - y + 1 

for absolute maxima and minima. 

6. Same problem for 

Ax% H- 2Bxy + Cy2 + Dx + Ey + F Bz — AC < 0. 

Treat all cases. If an extremum exists, find its position. 

In the following examples, the existence of the extremum may be assumed. 

7. Find the volume of the greatest rectangular parallelepiped 
msenbed in an ellipsoid, the axes of the ellipsoid being perpendicular 
to the faces of the parallel piped* 

. 8> Find the 13636 dimensions of a tent. Assume the two ends closed 
by isosceles triangles. There is no floor- 

9. A cylinder is capped at its ends by equal cones. Find the maxi¬ 
mum volume for a given surface area. 
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10. Find the triangle of maximum area for a given perimeter. 

11. Write the equation of a torus obtained by rotating a circle 
about the z-axis. Show analytically that the surface has infinitely many 
“highest” and infinitely many “lowest” points. 

12. Prove the facts stated about the function / of equation (2). 
How' can we be sure that the desired maximum (§2.3) docs not lie in part 

of the first quadrant outside of the region E? 

§3. Sufficient Conditions 

In this section, we shall obtain sufficient conditions for relative 
maxima and minima. They will involve derivatives of the second order 
at a point, the theorem being analogous to Theorem B (n = 1) of §1. 

We shall also prove an analogue of Theorem C. 

3,1 Relative extrema 

Theorem 2. 1. f(x, y) t C2 

2. /1 = /s = 0 at (X, Y) 

3. ft% ~ fwfn < 0 at (X, Y) 

4. fu < 0 at tX, Y) 

—y fix, y) has a relative maximum at (X, Y). 

We use Taylor’s theorem with remainder to obtain the equation 

(1) A/ = f(X + h,Y + k) - f(X, Y) = J- [Ah* + 2Bkk + Ck*] 

(2) A = fn(X + Bh,Y + Ok), B = MX + Oh, Y + Ok), 
C = MX -f- Oh, Y + Ok), 

where 0 < 0 < 1. By hypothesis .1, inequalities 3 and 4 will hold 
also in some circle of radius 5 and center at (X, F). Consquently, the 
eircle h2 + ks < 5* will contain the point (X + Oh, Y -f- Ok). 

ar = 2^ uAh+Bky+(ac - *wi. 

But now the right-hand side is clearly negative for 0 < h2 + k2 < 

and the proof is complete* 
To apply the theorem for a minimum, one has only to reverse the 

inequality in hypothesis 4* 

Example A. f(z, y) — z* + y* — z* — y* + I 
We saw in Example D of §2 that hypothesis 2 holds 
at the points 
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Furthermore, 

[Ch. IV 53.2 

-2, /is = 0, /!S — —2 

0, = 4 at 

' = -2, = 0, = 4 

at (0,0) 

(* W * 7s) 
at (o,±-L\ 

1 o, = — 2 at 

/l2 /ll/jS — — *1 

= -16 at 

8 at ^0, 

= 8 at 

V2) 

(± W°) 
at (0, 0) 

* V?) 

1 

(* vf °) 
Hence, there is a relative maximum at (0, 0). There 
are relative minima at the four points (± l/y/2 

+ VV2). (We saw earlier that the minima are 
actually absolute.) Finally, the theorem is not 
applicable for the remaining four points, since hypoth¬ 
esis 3 fails there, 

3.2 Saddle-points 

A function/(*, y) has a mddle~-point at (X, F) if/,(X F) = f (X 

- 0 and jf the difference Af, defined by eqUta (iZJU'gmZ 

am negative values in every neighborhood of (X, V). For caamnle 
the fu,let,on q, has such » point at the origin, sinee it is positivetS 

lants one and three and is negative in quadrants two and four The 
surface a - ly is the familiar hyperbolic paraboloid. The reason for 
the term soddU-mnt ,s dear from the appearance of this surface 

Theorem 3. 1. /(*, y) £ C'i 

2- fi - ft = 0 at (X, Y) 

/is ~ /u/a2 > 0 at (Jf, F) 

► /(*, y) has a saddle-point at (X, F). 

Define A, B, C by equations (2), and set 

« -MX, F), 6 =/n(Jf, F), c =/2s(Z, F), 

We t“af tee<7clPsr°“'!h * »Pl>roa»h aero. 

Case I. a ^ 0. First set A = X, fc = 0. Then 

lim = lim ~ 
x—o 2 x-^ o X2 

a 
2 
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Next set h = —Xh3 k = Xa* Then 

lim = lim J [A&! - 25ab + Cas] - % (ae - 6s). 
x-hO A x—+o * * 

gy hypothesis 3, these two limits have opposite signs* Hence, Af will 
have opposite signs for small X in the two cases by hypothesis I. 

Case IT. c ^ 0. This case is treated like Case T. 
Case III. a — c = 0* Then 6^0. First set k — k — A, when 

= 5; 

and then set h = — h = X, when 

lim ^ = 
x-+o Xz 

-b. 

The desired conclusion now follows as in Case I. 
Example B. /(x, y) — xy 

fli — fnfn = 1 > 0 

The origin is a saddle-point. 

We can now see that the four points (0, ±1 /-x/2), (±l/\/2, 0) of 
Example A, which we were unable to test by Theorem 2, are saddle-points* 

We point out that if fit — fufn = 0 at a point where /i = /* = 0, 
the point may be a maximum, a minimum, or a saddle-point. The 
function 

/ =V2 - a3 

clearly has a saddle-point at the origin. Bub the function 
% 

f = y*+Z*± y* 

has a minimum there. The first of these two functions serves to illustrate 
an important point of the theory. In section L we saw that we could 
distinguish between maximum, minimum, and point of inflection by 
looking merely at the first non-vanishing term of the Taylor expansion. 
The situation is very different here; the above two functions have the 
same term of the second degree. The reason for the difference becomes 
clear if we consider an approach to the origin along the parabola y = x2. 
Along this curve, the two functions become 

/ = —r3 + x4 

/ == 2x4 + xBt 

respectively. In the first, the cubic term has now become dominant in 
the neighborhood of the origin. For the existence of a minimum, it is 
not sufficient that the homogeneous polynomial of lowest degree {> 1) 
hi the Taylor expansion should be always positive. 
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3.3 Least squares 

As a further example, let it be required to pass a line 

V = ax + b 

through the points (xi, t/i), (xt, yt), . . . , (xn, yn) by the method of 
leabt squares. That is. one must determine constants a and b so that 

n 

f(a, b) = J (a* + b - y<)2 

should be minimum. 
We have 

i-i 

(3) 

(4) 

n 

b) = 2 ^ (ax, + b — yt)xi — 0 
t-i 

n 

/*(®i b) = 2 ^ (axi + b — yt) = 0 
1 

n 

fn(a, b) = 2 ^ xf 
i-l 

ft 
/u{a, — 2 ^ ^ 

i-i 

n 

/«(<*» 6) “ 2 ^ 1 — 2w. 

Since 
i- 1 

(5) 

Theorem 2 is applicable. If n = 3, equation (5) follow from Lagrange’s 
identity, §1.2 of Chapter II. It is easily proved generally 

We have now only to solve equations (3) and (4) for 'a and b and to 
substitute these values in the equation of the line. We obtain 

i * tyi t1 
\Z* Z™ I* 

« o. 

Example C. The line “through” the points (1, 2), (0, 0), (2,2) 

x y 1 
3 4 3 
5 6 3 

is 

= —6a; + Qy — 2 =*= 0. 
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EXERCISES (3) 

Test the following functions for relative maxima, relative minima 

and saddle-points. 

1. x'1 + 2xy + 2y- + 4x. 

2. x* — y* + 3xs + 3y* — 9x. 

3. x* — xy 4 y\ 

4. (x + y)3 + (x — y)' - 12(x 4- y)- 

5. {x ~ 2)n + (x + 1)” + (y - 3)n 4 (y 4 l)n {n is a positive 

integer), 
6. Is the origin a relative maximum, relative minimum, or a saddle- 

point for the function 

ax'6 + hyz + cx2 4 dxy 4- ey2 d2 — 4ce 0? 

7. Test the functions z defined by the equation 

Xs 4 2y- 4 3zs — 2xy — 2yz - 2 

for maxima and minima by use of Theorem 2. 
8. Find the shortest distance from a point to a plane. 

9. Find the shortest distance from the line x <= y = z to the line 

* = i, y = o* 

10. Same problem for the lines y - 2.r, z = 3x and y = x — 3, z ~ x. 

11. Find the triangle of largest area which can be inscribed in a circle. 

Use the second derivative test of Theorem 2. 

12. Prove equation (5)'. 

13. Pass a line “through” the following points by least squares: 

(-2,0), (-1,0), (0, 1), (1,3), (2,2). 

Plot the line and the given points. 

14. Discuss the problem of least squares of §3.3 with the roles of 
x and y interchanged. That is, you are to minimize the sum of the 

squares of the errors in the abscissas. 

16. Apply the result of Exercise 14. to the points of Exercise 13. Plot. 

§4. Functions of Three Variables 

A theorem analogous to Theorem 1 for functions of three variables 
is easily developed. We omit it since the proof is practically the same 
as that of Theorem 1. To obtain a result analogous to Theorem 2, 
we must first develop briefly the theory of definite quadratic forms in 

three variables. 
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4.1 Quadratic forms 

By a quadratic form in three variables we mean 

W r(*ii *5) =22 aiiXiXi % = a,-.- 
i-1/-I 

= an#! + ai&iXz + «i3xix3 
+ + a%&\ + o23x^3 
+ flsi^Ei + fl 32X32: s + flasxf. 

It is positoe ttylnte if, and only if, F(xu x2, *,) > 0, except when *, = 
x-2 - *3 — 0. Clearly F(0, 0, 0) =0. It is positive semidefinite if 
and only if, / ^ 0, the equality holding for certain values of xt x2 x 
not all zero. For example, if * 

F = a*f + 4 -f z|, (? = £?+ xl 

F is positive definite and 6’ is positive semidefinite. Note that Gao, 
but t?(0, 0, 1) = 0. If O' were being considered as a form in two variables 
xi, xit it would be positive definite. Negative definite forms may be 
defined, mutalis mutandis. It is a familiar fact that the form in "two 
variables Ax1; + 2Bx\Xt + Cx\ is positive definite if, and only if, 

A B (2) .d > Q 
B C > 0. 

We now develop a similar result for the form (1) 

Lemma 4. 7 he form (1) is positive definite 

(3) flu > 0 flu 
&21 

flj o 

fla 2 
> 0 

flu fl 1a fll3 
flai fl23 ^23 
fl3i flas fl33j 

> 0. 

We prove only the sufficiency of condition (3). Denote the three- 
rowed determinant (3) by A and the cofactor of its element aif by A,-. 
By use of the formula for the product of two determinants, we have 

flu &21 
““ flu-431 A — diiAfin 

fln43i — fl2i^lsi 

All fl£L flsl 

D A 0 — anA-> 

0 0 A 

i 0 0 
A 0 A 22 A 23 = 

0 4*2 4-33 1 

lienee, 

flsi 
si 

A — 

- flu A. 
14$* 4 33 

1-4 32 A 33 

Now collect terms in z{ and in Xx in the form (I) as follows: 

F = Ax\ + 2 Bxi + C 

A - an, B - + Oi**^ C - anx\ + 20^, + a^x*. 
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We shall show that AC - B* > 0 unless x2 = %n = 0, and this will 

prove F > 0 by (2). If £3 = - Q, F = a"x$> and this is Positive 
unless Xi is also zero, so that F is positive definite. 

In AC — Bz collect terms in xlt in x2x* and in xl as follows: 

AC — = Azzx\ — 2*433X3X3 + AtaxJ* 

To show that this is always positive, unless x2 = x3 = 0, we again use 

(2). We need 

Aw — 

A 22 

A $2 

-433] 
Awl 

= flu 

flu A12 

flai fl22 
flu A12 

flsi flas 
flai fls2 

>0 

fll3 
flS3 
033 

> 0. 

But these facts follow at once by hypothesis. 
We observe in passing one very important distinction between forms 

in two variables and forms in more than two variables. The former is 
positive semidefinite if, and only if, the sign > is replaced by ^ in (2) 
(not both >). If a corresponding change is made in inequalities (3), a 
necessary but not a sufficient condition for (1) to be positive semidefinite 

is obtained. For, suppose all = 1, except figs - 0. Thou 

an > 0, 

an fll2 a i3 
an fl-12 

- o, A21 flsa a 23 
a31 a22 fl32 fl38 flsi 

= 0 

F = (xi + Xz + X>)2 - x\ 
F( 1, L ~2) = -4 < 0. 

4.2 Relative extrema 

We can now establish our main result. 

Theorem 4. 1. f(x, y, z) e C2 
2. /i = /, = h = 0 at (X, Y, Z) 

3. /n > 0, 
i |/n /i 

fit fn fn 

V
 

0
 

hi /22 fn 

hi h% h$ 
1/21 /j! 

fix, y, z) has a relative minimum at (X, Y, Z). 

>0 at (X, Y, Z) 

By Taylor’s theorem, we have 

A/ = f{X + huY + h2, Z + hi) - fiX, Y, Z) 
3 3 

MX + 9*1, Y + 0h2, Z + 9ft,) 

where 0 < 6 < 1. By hypothesis 1 it is clear that inequalities 3 also 
hold in some neighborhood of (X, Y, Z). If the point (X + Aj, Y + ft j, 
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f + a) r f ne,S^orhood( the coefficients of the quadratic form 
J/ will satisfy the conditions of Lemma 4, so that Af > Q throughout the 
neighborhood, except at A, = *s = A, = 0, where Af - 0. Hence f 
has a relative minimum at (X, Y, Z). ’ J 

For a relative maximum the’ first and third of the inequalities of 
hypothesis 3 must be reversed. 

Examplk A. f(x, y, z) = ** + y* + 3z* - xj, + 2m + g. 

/1 *= 2x - y + 22 

/* “ “* + 2y -J- 2 

/» = 2j: + y -f 6z 

Conditions 3 become for X = Y = Z = 0 

2 > 0, 

Hence, 

2 -1 
-1 2 

- 3 > 0, 
2 -1 

-1 2 
2 I (i 

= 4 > () 

fix, y, z) g /(0, 0, 0) = 0. 

EXERCISES (4) 
1. Discuss the behavior of the function 

/(*j V< z) = x* ~ yH- + xijz - x3 - 2ys - 22 

at the origin* 

2. Same problem if the sign of the term in s* is changed to plus. 
Hint: Consider the function of two variables f(xt yt 0) 

3. Find the distance from the point (a, b, c, d) in four dimensions to 
the hyperplane 

Ax + By + Cz + Du + E = 0. 
4. Pass a curve 

y = a + 6a: + cx1 

" thTgh!'" ®ven points by the method of least squares Illus¬ 
trate by the points (-1, 1), (0, 0), (1, 1), (3, 2). Plot. 

5 Find the best shape of a wall tent. The ends are closed by rec¬ 
tangles capped on top by isosceles triangles. There is no bottom, 
1 fie existence of the extremum may be assumed. 

6. Maximize the function xysw subject to the conditions 

xy» + xyv> + xw + Vzw-l, x > 0. y > 0, z> 0, » > 0. 

7. State without proof a sufficient condition for fix, y, z, t) to have 
a relative maximum (minimum). 

®* prove the necessity of conditions (3) in I^mnm 4* 
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flint: Choose the variables successively as (1, 0, 0), {—a%u aih O). 

(An, An, Am)- 

§5, Lagrange's Multipliers 

If the variables of a function which is to be maximized are not inde¬ 
pendent but are connected by one or more relations, no new theory is 
needed* The derivatives which are to be equated to zero can be com¬ 
puted by the methods of Chapter L However, the formal procedure 
can be freed of any consideration of which variables are to be regarded 
as independent by the introduction of extraneous parameters, known as 
Lagrange's multipliers. We shall illustrate the method in several cases, 
from which the general procedure may be inferred. 

5.1 One relation between two variables 

A typical problem of elementary calculus is to maximize a function 

(i) « = /(*, v), 
where x and y are connected by an equation 

(2) g(x} y) = 0. 

Let us suppose 

Ql + oi > 0 

in a region of the xy-plane. If it is which is not zero, we may solve 
equation (2) for y and substitute in equation (1), thus regarding x as the 
independent variable* A necessary condition for a maximum (or mini' 
mum) is thus seen to be 

du 

dx = /i 

The points desired will then be included among the simultaneous solu¬ 
tions of the equations 

(3) - 0, gix, y) = 0. 

On the other hand, if it is g\ which is not zero, we take y as the independent 
variable. But in this case we are led to the same pair of equations (3). 

To solve the same problem by the method of Lagrange, introduce 
the Lagrange multiplier X, forming the function 

V = f(x, y) + \g(z, y). 

We now proceed as if x and y were independent variables and set 

fd\ dV 
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\Ve can now solve one or the other of these equations for X (depending on 
which of the functions gx or g3 is not zero) and substitute in the other 
equation. Combining the result with equation (2) we arrive anew at 
equations (3). Thus, instead of solving the two equations (2) for at and 
t” raUSt°r solve thc three equations (2), (4), (5) for *, y, and X. 
\\e arnve at the same pairs (z, y). As we mentioned above, the advan 
tage of the Lagrange method is only that it does not require us to discuss 
which variable is independent. We state our results as a theorem. 

Theorem 5. 1. f(x, y), g(z, y) % C1 in a domain D 

2. ff? + fff > 0 in D 

>■ The set of points (x, y) on the curve g(x, y) = 0, where 
f(x, y) has maxima or minima, is included in the set of 
simultaneous solutions (x, y, X) of the equations 

A(*, y) + Xffi{», y) = o 
Mz, y) + *5s(x, y) = 0 

ffiz, y) = 0. 
Observe that a domain includes no boundary points. Hence, we 

are excluding from consideration the type of extremum that can occur 
on the boundary of a region and for which the derivatives in question 
need not vanish. 

Example A. Find the rectangle of perimeter l which has maximum 
area. IT the lengths of the sides are x and y, then 

V = xy + X(2z + 2i/ - /). 

Equations (4) and (5) become 

y + 2X = 0 
x + 2X = 0. 

The solution of equations (2), (4), (5) is x = y = 1/4, 

^ ~ 1/8, so that the rectangle of maximum area is a 
square. 

Example B. An instructive example is that of finding thc shortest 
distance from the point (1, 0) to the parabola y- = 4%. 
We must minimize the function 

where 
«“(*-!)• + y\ 

y! = 4x. 

If we eliminate-?/ and set du/dx equal to zero, we find x = — 3. an absurd 
result since the parabola has no real point with negative abscissa. The 
valid range mx £ 0, and the minimum occurs at z = 0, where the 
derivative du/dx is not zero. 
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The method of T.agrange is applicable, however. Take the domain 

p as the entire zy-plane. Then 

V = (x - i)s 4- ys + Hy* - 4z), 

and we must solve the system 

2(x - 1) - 4X = 0 
2y + 2\y = 0 

y2 — 4x = 0. 

From the second equation cither y = 0 or X = —1. The latter must 
be rejected since it would lead to x = — 1. Hence, the only real solution 
is x = 0, y = 0, X = —1/2, and the required distance is unity. Note 
that we could not eliminate X from the system by solving the second 
equation thereof for X. For, g3{x, y) = 0 at the very point which yields 
the minimum. This is, of course, mirrored in the fact, observed above, 
that x is not a suitable independent variable. The strength of the 
Lagrange method in not singling out any variable as independent is thus 
brought forcefully to our attention. 

5.2 One relation among three variables 

We next consider the case 

« = fix, y, z) 

six, v, = 0 
ff? + ol + g\ > o. 

It is easily seen by elimination that the desired extrema will lie among 
t.he simultaneous solutions of one of the three systems: 

5 = 0 j 5 = 0 j ff 
^(/» _ rj 

d(x, y) ' 
|*(f. ff) _ n ‘ i atf, y) 

<3(y, z) < d(z, x) 

*(/, ff) _ n | 
d(x, s) ■ 

3 if. 5) _ n I 

13(y, z) U’ \ 
1 dif, g) 

t y) 

according as it is gi, gi, or y* which is different from zero. 
If we look for extrema of the following function of three variables 

*> y18, 

V = f{x, y, z) -f mx, y, z), 

we are led to the system 
5 = 0 

A + *5t = 0 
A + = o 
A + Ms = o. 

We can solve at least one of these for X and thus arrive at. one of the above 

systems. 
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Example C. Find the rectangular parallelepiped of surface area 
a* and maximum volume. We have 

V = xyz + X(2xy + 2yz + 2zx - a*) 
yz + H2y + 2s) = 0 
xz -f- \{2x + 22) = 0 

+ X(2:r -f 2y) = 0. 

Since the variables x, y, z must ail be positive, no coefficient of X is zero 
bo that 1 

- — - - y _ x + y 
y y H- z z x + z’ 

whence x a 

4 VE 
The desired solid is a cube. 

5.3 Two relations among three variables 

The next case to be considered is 

u = /(*, V, s) 
g{x, y, z) = 0 
h(x, y, 2) = 0 

T here is now a single independent variable which must be chosen in 
accordance with the Jacobian which is not zero. All three cases lead to 
the system 

(7) g - h — = 0_ 
d{x, y, z) 

The Lagrange method introduces two parameters X and n and leads 
to the system of five equations in z, yt zr X, ^ 

/1 + Xffi + Mi — 0 
U + Xff; + llh2 = 0 

fx + Xffa + Ms = 0 
g = 0 
h = 0. 

Under conditions (6) this system is easily seen to reduce to the svstem (7) 
when X and ^ are eliminated. J K } 

Example D. Show that the shortest distance from a point to a line 
in space is the perpendicular distance. In vector 
notation, we have as equations of the given line 

(ab) = k 
{b\x) = l ab 0, 
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Let c: (c\f c3) be a point off the given line. The 
letters k and l represent scalars. 

V = (x — c\x ™ c) + X[(aj&) - fc] + j*[(b|x) — i]« 

The system to be solved for xh x*j x3l X, ti is 

2(xi — Ci) + Xa* + fibi = 0 i = 1, 2f 3 
(a\x) = k 

(b\x) = l 

Eliminating X and u from the first three equations, 
which we may do since the vectors a and b are not 

parallel, we get 

(ad x — e) — 0 = (adjs — c). 

That is, the vector x — c is perpendicular to the 

vector a6, as we wished to prove. 

EXERCISES (5) 

In the following problems use the Lagrange method. No discussion 
of the existence of the maximum or minimum is expected unless expressly 
required. 

1. Derive the plane formula for distance from point to line. 

2. Find the direction of the axes of the ellipse 

5ar — + 5y2 — 4x — 4*/ —■ 4 = 0 

by maximizing (minimizing) the distance to the center. 

3. Same problem for the general ellipse. 

4. Find the largest and the smallest distances from (0, 0, 0) to the 
ellipsoid 

y* 2 a.2 

=i + §3 + T - 1 a <b <C. 
a2 b1 c3 

5. Divide the number 12 into three parts xt y, z so that xyH3 shall 
ho a maximum. 

6. Discuss the Lagrange method for a function of four variables 
hound by two conditions. 

7. Same problem with three conditions. 

8. Find the rectangular parallelepiped of maximum volume, the sum 
of the lengths of all the edges being given, (Show the existence of the 
maximum.) 

9. A function of z is defined implicitly by the equations 

/(*, 2) = 0 
g(z> yt z) = 0. 
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Obtain a necessary condition that z should have a maximum or a 
minimum, 

10. By the result of Exercise 9, find the highest and lowest points 
of the circle 

x* 4- y2 + za = 16 
(a; + l)s + (y + l)s + (z + l)2 = 27. 

11. Find the minimum distance from the origin to the surface 

{x - yY - z3 = 1. 

§6. Families of Plane Curves 

By a family of curves is usually meant an infinite set of curves. In 
most cases the curves are all of the same typej for example, all circles 
or all parabolas, the individuals of the family differing only in size or 
position. If each individual of a family of plane curves has attached to 
it a number a, we may represent the whole family by the single equation 

(!) Six, y, a) = 0. 

If we set a equal to the value corresponding to a given curve, equation 
(1) is to reduce to the equation of that curve. 

An example of a family of lines is the set of all tangent lines to the 
unit circle, center at the origin. Let us take as the parameter a attached 
to a given line the angle which the normal through the origin makes with 
the positive r-axis. Then equation (1) becomes 

(2) * cos a + y sin a = 1. 

By the envelope of a family is meant a curve touched by all members 
of the family. In the above example, the unit circle itself is an envelope 
of the family (2). Any curve is the envelope of all its tangents. We 
shall discuss here methods of finding envelopes of given families of curves. 

6.1 Envelopes 

We begin with a more precise definition of an envelope. 

Definition 3. The family of curves (1) lias an envelope 

(3) x — g{a), y = h(a) 

if, and only if, for each a = a0 the point (g(a0), h{aa)) of the curve (3) lies 

on the curve f(x, y, afj = 0 and both curves have the same tangent line there. 

Example A. The family (2) has the unit circle 

x = cos a, y = sin a 

as an envelope. For each a the poiut (cos a, sin «) 
lies on the curve (2). The slope of the line (2) for a 
given a is — ctn a, and the slope of the unit circle for 

(4} 
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the same a has the same value. The tangents are 
vertical if a = 0 or if a =jt. 

Theorem 6. 1. fix, V, a), h(a) E C1 

2. fi+ft * 0 
3. ig'Y + ih'Y * 0 

4. /(?(«), Ha), a) = 0 

5. /s(£j(a)t M«)> «) = 0 

The family (1) has the curve (3) as an envelope. 

For each « the point (17(a), It (a)) lies on the curve (1) by hypothesis 4. 

For each a the slope of the curve (1) is 

dy = _h 
dx fs 

— 00 

By hypotheses 4 and 5, 

fig' fSi' +/a ** fig' + fiti = 0. 
Hence, 

— CO 

/2 - 0. 

gf 9* 0 

gr = 0. 

Since the right-hand side of (5) is precisely the slope of the curve (3), 
the proof is complete. It is clear that when h vanishes/i does not and 
that then gf must also vanish. Both slopes are then infinite. 

This theorem provides a simple method of determining the functions 

g and L We have only to solve the equations 

(6) f{x, yt a) = 0 Mx, a) ^ 0 

as simultaneous equations in x and y, In Example A, these equations 

become 

X €09 a + y sin a *= 1 
— x Bin a +■ y cos a — 0. 

The solution of the system is given precisely by equations (4). 
We observe that the conditions of the theorem are not necessary. 

The family of curves 

/ = x — VV + - 0, 

obtained by translating half a parabola parallel to the ar-axis, clearly 
has the a>axis as an envelope. But the theorem is not applicable, 
since f( Cl. Moreover, no simultaneous solution of equations (6) 
exists, sinces= L If the entire parabola is translated, the method is 

applicable: 
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f = (z + a)* — y = 0 

0. 

[Ch. IV $6,3 

We dearly obtain the z-axis as an envelope. 

Example B. Find the envelope of the family of lines, the sum of 
the squares of whose intercepts is unity. The family 
has equations 

(7) 

(8) 
5+f-« 

as 4- &2 = 1. 

Here it is convenient to retain 6 as an auxiliary param¬ 
eter. Then 

_ £ _ y _* , ay . 
s.2 “ JTTi “ o 

(9) 

b2 da 

Z1/a 

a 

6s 
_ y 1/3 

Solving equations (7) and (9) for a and 6, we obtain 

a = xl/s(z3/3 + ym), b = yin{xm 4- y-n). 

Substituting these values in equation (8), we find the 
equation of the locus, 

Xm 4. yVt - J 

6.2 Curve as envelope of its tangents 

Let a plane curve, not a straight line, be given in the form 

0°) y = fix), ft C\ 

The f amity of its tangents is 

y ~ fia) — /'(«)(* — a) = 0. 

To obtain the envelope of the family, we must solve this equation noth 
the equation 

~f'(a)(x — «) = 0 

for x and y. Since/“(a) is not identically zero, the solution must be 

x = «. V = /(«), 

a pair of equations that represents the given curve. 

6,3 Evolute as envelope of normals 

Consider the family of normals to the curve (10), 

X - a + f (a) (y - /(a)) = 0. 
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Differentiate with respect to a, 

-1 + /"(«)(* -/(«)) “/'(a)* 

guid solve for x, y • 

0, 
X = a — 

/'(i +r‘) 

y = / 4- 

r 
14- 

r 
Jlut these are the parametric equations of the evolute of the given curve. 
In elementary calculus, the evolute is defined as the locus of the centers 
of curvature. It is shown that the normal to the curve is tangent to 
the evolute. That result has now been verified by the present methods. 

, 

EXERCISES (6) 

In the first five examples, find the envelopes of the families of lines 

described. Plot several of the lines. 

1. ay = a2z 4* 1. 

2. 2ay — 2x 4* a2. 

3. The sum of the intercepts is constant. 

4. The sum of the intercepts is equal to their product. 

fi. The area of the triangle made with the axes is constant. 

6. Show that the curve (3) is the envelope of its tangents. 

7. Find the evolute of the curve (3). 

8. Find the evolute of the ellipse given in parametric form. 

9. State and prove a result analogous to Theorem 6 for a two- 

parameter family of surfaces, 

f{x, y, 2, a, 0) = 0. 

10. Prove that a surface 

z = fix, y) 

is the envelope of its tangent pianos. You may assume that the surface 

is not developable; that is, 

/] 1/22 ^ /ii- 

11. Find the envelope of the family of spheres 

(z - a)* + iy - 0Y 4- (3 - 0 4- 2)2 = 2. 

12. Solve the same problem for 

(z - a)2 4- y- + (* ~ 0Y = 2a 4- 20. 
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§7. Families of Surfaces 

We shall discuss in this section one-parameter families of surfaces 
in a manner analogous to that used in the previous section for families 
of curves. An example of such a family is the set of all tangent planes 
to a cone. Since it will be convenient to employ vector analysis \ve 
shall revert to the notation of Chapter III, Consider the cone 

+ *1 = &J, 
which may be written in parametric form 

xi = u cos v, Xi — u sin v, = «. 

The tangent plane at a point (u, v) of the surface is 

Xi cos v + xt sin v = x3. 

I his does not depend on u. The equation represents a one-parameter 
family of planes. The general one-parameter family of surfaces will 
have the form 

t1) 1, Xi, Xi, l) = 0, 
the parameter being t. 

7,1 Envelopes of families of surfaces 

We begin with a definition. 

Definition 4. The family of surfaces (1) has an envelope 

* = g(t, it) 

if, and only if for each t = t0 the curve x = g(t0, u) lies on the surface 
f(%i, xtt Xz, to) = D and if along that curve the surface (I) (with t = h) 
and the surface (2) have the same tangent planes. The curve x = g(ta, u) 
is called the characteristic curve of the surface f (2x2, xr, t0) = 0. 

In the above example, the characteristic curve of the plane 

£1 cos Vo + Xt sin Vo = 

will be the straight line 

Xi — u cos tfo* X2 = u sin x3 = u. 

For, this line lies in the plane, and its locus, when «„ varies, is precisely 
the original cone, which is the envelope of the family of planes. 

Theorem 7. 1. f(xu xt, xi, t), gft, u) e C1 t = 1 2 3 

2. V/ ^ 0 ’ ' 

3. g,gu ^ 0 

4- fiffu 9t, Qi, 0=0 
f*(0h 32, Qi, 0=0 

* the family (1) has the surface (2) as an envelope. 
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Hypothesis 2 means that the partial derivatives of /, with respect 
to the first three variables, do not vanish simultaneously for any t. 
In 4 and 5, the identities are in both t and u. By 4, it is clear that the 
curve x ~ g(,lo? a) lies on the surface f\xi, x2, Xi, tf) 0, Differentiating 
identity 4 first with respect to t, using 5, and then with respect to u, we 

hftVe m gd = 0, (V/Ii7u) = 0. 

Hence, the normal to the surface/(an, Xi, x3, 0) = 0 has the direction of 

the vector ^ 
((«.»)■ 

But this is also the direction of the normal to the surface (2) along the 
curve where t — to, and the proof is complete. 

This theorem provides the means of finding envelopes. The pair 

of equations 
f(xi, x^ xi} t) = 0, Xt, Xi, 0=0 

determines the characteristic curve for any fixed t as the intersection 
of two surfaces. The locus of these curves, as t varies, is the desired 
envelope. Its equation is obtained by eliminating t between the two 
equations. In the example of the cone, the equations are 

Xi cos v + ai2 sin v = xt, —xt sin v + cos v = 0. 

By squaring both sides of these equations and adding, we get 

3-1 + A = A, 
the equation of the envelope, 

7.2 Developable surfaces 

The envelope of a one-parameter family of planes is called a developable 

surface. Thus, a cone is a developable surface, as we saw above. 
Clearly, a cylinder has the same property. It ean be shown that any 
developable surface, like the cylinder and cone, can be cut along a straight 
line of the surface and then rolled out onto a plane without tearing or 
stretching. 

We shall now illustrate a third type of developable surface. 

Definition 5. The locus of the tangent lines to a space curve is called 

Ike tangent surface to the curve. 

Example A. Consider the twisted cubic 

Zl = l, Xi — t3, Xi = t*. 

The tangent has the direction of the vector whose 
components are 1, 21, Zt-. For t = t0, the tangent 

line has equations 

t 
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k + «, Xi = § + 2tau, xs = tl + 3tlu. %1 

If now we allow t» to vary, these equations represent 
the tangent surface to the twisted cubic. 

W e shall show that tho envelope of the osculating planes of a given 
curve is the tangent surface to the curve. Let the curve be given 1JV 
the equation y 

a; = £($}, 

where the parameter is the arc length. The family of osculating planes 
IS 

(X - z(s)|y) = 0, y = 
y/x"\x‘ 

Differentiating with respect to s, we have, by use of the Frenet-Serret 
formulas, 

^ (X ~ *(«)Ii8) - («'{«) !t) = 0. 
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7, Find the equation of the polar developable of a curve. 
8, Show that the polar developable of a plane curve is a cylinder 

foot necessarily circular). 
9, Find the envelope of the famay 

(9 — 31*311 + Stxt — Xi — 0. 
Ans, (xixt — £3)2 — 4(*| ~ £2) (4 — £1*3) = 0, 

10. Does the family of spheres 

(si — 04 + 4 + 4 = t2 

have an envelope? Is Theorem 7 applicable? 

Since £,(s) ~ a and (a|y) = 0, this becomes 

(X - x(s)\ff) = 0, 
whence 

X — x(s) = « dr 
X — xfs) + Ua. 

But this is precisely the vector equation of the tangent surface to the 
given curve. 

There are two other important developable surfaces connected with a 
curve, The envelope of the family of rectifying planes is called the 
rectifying developable. It can be shown that the original curve lies on 
it and that, if the surface is rolled out onto a plane, the curve becomes 
a straight line. It is from this property that the word “rectifying” 
derives. l’inally, the envelope of the normal planes is called the polar 
developable. 

EXERCISES (7) 

Find the characteristic lines and the envelopes of the families described 
in the first five examples. 

1- (xi - i)4 + x\ + 4-1. 
2. 4 + 4 + (xB - ty = p/% 

3* Zi cos $ + X2 cos 6 + x$ sin 0 — vs. 
4. £i sin 0 — xa cos S + £3 = 0. 
6. x\ + 4 + 4 + 2txi + kP = 0. 

6. Find the equation of the rectifying developable of a curve. Show 
that the given curve lies on it. 



CHAPTER V 

Stieltjes Integral 

§1, Introduction 

The student Is assumed to be familiar with the ordinary theory of 
the definite integral* The Stieltjes integral is, however, only a slight 
generalization of that familiar integral, so that what follows may be used 
by him as a review or solidification of the classical theory. He has only 
to replace the integrator function a(x) of the present chapter by the func- 
tion x in order to revert to the Riemann integral, which is referred to in 
elementary texts by the “integral as the limit of a sum,” 

Although the Stieltjes definition differs so little from the Riemann 
definition, nevertheless, the change is very important. The Stieltjes 
integral is an ideal tool in physical applications* It is a familiar fact 
that the ordinary integral enables one to define physical concepts involv¬ 
ing continuous distribution of mass by analogy with corresponding con¬ 
cepts for a distribution of particles. For example, the formula for the 
moment of inertia of n particles on a line is 

nikxl; 

the moment of inertia of a continuous distribution of mass is 

I — ja m(x)x*dz. 

But the two situations, one discrete and the other continuous, must be 
treated separately, sums being used in one case and integrals in the 
other* However, the relation between the sign X and the sign / is more 
than analogy* By use of the Stieltjes integral, the two cases may be 
treated by a single formula. In fact, we may even use this generalized 
integral to take care of distributions of mass which are partly discrete, 
partly continuous. The integral is even more important in theoretical 
mathematics, chiefly because of this capacity for including both sums 
and limits of sums. 

1,1 Definitions 

As in the definition of a Riemann integral, we begin by dividing up 
the interval of integration into subintervals. To simplify the writing 
we introduce certain terms and notations. 
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Definition 1* A subdivision A of an interval (a, (?) is a set of numbers 

\Xk}tit or V°^si suc^ that 

a - Xu < xi < • * • < xn - b. 

\ subdivision involving n + 1 points divides the interval into n adjoining 

subintervals (xo, £i), {^i, ^), * * , j xn)* 

Definition 2. The norm ||A[[ of a subdivision A is 

|[A[l = max (xi ~ x% — %i, ' ‘ * » xn — xn-i). 

In other words, it is the length of the largest of the subintervals. 

Definition 3. The SlieUjes integral of f(x) with respect to a(x) from 

a to bis 
n 

m [b f(z)da(x) = lira V /(&)[“(#*) ~ a(»*-0]» 

where 
Xi-i g fa £ ** fc = 1, 2, • • ■ , n. 

The left-hand side of equation (1) is the notation employed for the 

Stieltjes integral. It reduces to the usual notation for the classical 

integral if a(s) = x, as it should in view of the right-hand side of equation 

(1), The notion of the limit (1) needs amplification. The norm II ^ II 

may indeed be regarded as an independent variable. But 

fl 

^ /(&)!*(**). “ 

is not a single-valued function of ||AJ1* For, there are dearly many 

different subdivisions all having the same norm. And even with a given 

A there are usually infinitely many values of <ta corresponding to the 

infinitely many choices of the points When we say that 

lim <j& — /, 
llAG->0 

we mean that to an arbitrary positive number c there corresponds a 

number 5 such that 
ka — /j < * 

for all values of corresponding to any A whose norm is less than S. 
It should be clearly understood that the limit (1) may or may not exist, 

depending on what functions f(x) and «(x) arc used. It is only when 

the limit exists that the integral is defined. 

Example A. a = 0, b = 2 
f(x) = «(x) — 0 

= 1 
0 g x ^ 1 
1 < x £ 2, 
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Example B. 

Here the limit (1) does not exist, and the Stieltjes 
integral is undefined. For, let 4 be an arbitrary sub¬ 
division of (0, 2). There is just one of the differences 

“(*t) ~ a(zk-i) fc = 1, 2, • • • , n 

that is different from zero. This difference has the 
value 1, say for k = m. Accordingly, <r& can have the 
two values 0 or 1, depending on the way in which 
£” is chosen. Clearly, <r4f always having two values 
differing by 1, cannot approach any limit as |[4|[ 
approaches zero. 

Let a, b and a(x) have the same definition as in Example 
A and let/(x) be identically 1. In this case, 

fQ2f(x)da(x) - 1. 

For, the only non-vanishing term in any v* must have 
the unique value 1, regardless of the choice of the 
?*. 

1.2 Existence of the integral 

We now state a condition in which the limit (1) exists. We use the 
f' mbols "f and j, to indicate the classes of non-decreasing and non- 
increasing functions, respectively. 

Theorem 1. 1. /(*) E C aZx Zb 

2- “(*) e T a Z x Z b 

Ja f(x)da(x) exists. 

The proof ol this theorem depends on some of the more delicate 
properties of continuous functions and will be deferred until later. 
The meaning of the result is entirely clear without the proof. Obviously, 
hypothesis 2 may be replaced by a{x) z j.. 

Example C. a = 0, b = 1, f(x) = x, a(x) = x1. 

Since x c C and i!t f in 0 £ x Z 1, we know by 
Theorem 1 that 

n 
xd{xi) 

f 

exists. Let us find its value. Since the limit (1) 
exists independently of the manner of subdivision 
and of the choice of the points £*, we may make our 
choice in any convenient way. Let us choose the 
subintervals all equal and choose ?* = xk. Then 
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(2) 

(3) 
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J* f(z)dtx(z) 

k =1 

1 n n 
k~ i 

But 

t- 

s*-» 

»(» + 1)(2« + 1) 

(n + 1) 

*—1 

Hence, 

/>*■>-■“=•[ 
_ 2 
“ 3 

n(n + l)(2n + 1) «(n +1)1 
3 ' 2 J 

EXERCISES (1) 

1. In Example B change f(x) to any continuous function. Show 

that the integral still exists and has the value/(l). 

2. Let/(a;) e C in a ^ x Z b; a(a) = c, a(x) = c + h in a < x Z b. 

Show that 

f(x)da(x) — f(a)h. 

3. Change a(x) in Exercise 2 to a step-function with a single jump 

at b. 

i. Change a (re) in Exercise 2 to a step-function with a single jump 

at an interior point. 

5. Let <*(3) and f(x) both be step-functions, both having a single 
jump at a common point c, a Z c Z b. Show that the limit (1) cannot 

exist. 

6. Evaluate the limit (2) of Example C by applying the law of the 
mean to the difference a(k/n) - a([k - !]/«)• Then, using elementary 
integral calculus, show that the limit is an ordinary integral. Evaluate 
it by the fundamental theorem of the integral calculus. 

7. Prove equation (3) by induction, 

8. Prove that 
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y ft(ft + 1) = ^ + 2) 
k-l 

by use of the reiation 

k(k + 1) = DO + 2) - (ft - l)ft(fe + 1)] 

9. Prove equation (3) by use of Exercise 8 and the relation 

k2 = ft (ft + 1) - k. 
10, Prove 

11- Find 

^ k* = n*(n + D3 

k~i 

n 

A- 1 
Hint: Write 

k* = ft(ft 4- 1)0 + 2) (ft + 3) + ak(k + 1 )(ft + 2) + 6ft(ft + 1) + ck 

and use the method of Exercise 8. 

12. Evaluate 

£ *«(**> 

by the method of Example C. 

13. Solve the same problem for 

jl xd(z-), 

14* Solve the same problem for 

/_3j xd(x-). 

15* Solve the same problem for 

£ zd{xz). 

16. Verify the answer of Exercise 12 by the method of Exercise 6. 

17. Solve the same problem for Exercise 15. 

18. If «t(x) = a(x) + km (a, b) except that ai(a) = a(a), compare 
the two integrals 

J* f(x)dai(x), £f(x)da(x). 
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§2. Properties of the Integral 

We collect hero some of the elementary properties of the Stieltjes 
, . _,0Ta] '1’he proofs of these are almost identical with the corresponding 

ones” for the Riemann integral and are omitted. We show how the 
Stieltjes integral may reduce to a sum or to a Riemann integral undoi 

certain circumstances. 

2.1 A table of properties 
In the following list ft is a constant, the functions f(x) and a(x), with 

or without subscripts, are, respectively, continuous and non-decreasing 

in o « x ^ b. 

I. £ da(x) = a(b) — a(a). 

II. £}(x)d[a(x) + ft] = £f(x)da(z). 

III. £ kf(x)da(x) = ft £f(x)da(x). 

IV. £ [Mx) + Mx)]da{x) = £fi(x)da(x) + £ f2(x)da(x). 

V. £ f(x)d[ai(x) + «a(r)l = ja f{x)dai(x) + Ja f{x)da2(x). 

VI. £f(x)da(x) = £ f(x)da(x) + £ f{x)da(x) a < c < b. 

£ ft ^ £ fi(x)da(x). VII. f\{x) ^ Mx) 

VIII. 

IX. 

£ f(x)da(x) 

£ f(x)da(x) 

^ £ |/(r)|da(l). 

£ [a(f>) «(«)] max |/(*)|. 
n 

In connection with Property VI. observe that f{x) is assumed con¬ 
tinuous in a x g b. The right-hand side would exist if /(i) e C in 
a ^ x ^ c and in c S x g b. But then f(x) and «(*) might have a 
common point of discontinuity at x = c, in which case the left-hand 

side would not exist (compare Example A, §1.1). 
Property VIi I follows from VII by use of the inequalities 

—|/C*)I ^ 1/0)1 a^x^b. 

Property IX is proved by use of VIII, VII, III and I. Observe 
that all these properties could be used, with slight modification, in the 

case in which the functions a(x) t J.. 

2.2 Sums 
Let a{x) be a step-function with jumps at the points ck of amounts 

ft*, where 
a < ci < c2 < • ' • < cn < ft. 
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That, is, «(*) is constant in the subintervals created by the introduction 
of the points c* and 

«{ck+) - a(ct-) = A* ft = 1, 2, ■ • • , n. 

Ch. V §2,41 

Let /(*) e C in a £ x £ b. Then 

(l) jff{x)da(x) = | hkf(clt). 

Ths can be proved by use of Properties V or VI combined with Exercise 

* 

2.3 Riemann integrals 

Let f(z) e C and «{*) tC] in a £ x £ b. Then 

^ fa /(*)&*(*) = f f(x)a'(x)dx. 

1 he integral on the right is an ordinary Riemann integral. To Drove 
equation (2) we have by the law of the mean 

ft 

— ^ %k_j <; 
k~l £*♦ 

The result is now immediate by use of DuhameFs theorem (see Theo¬ 
rem 9). 

2.4 Extensions 

In the table of §2.1 it was assumed that the functions/(x) e (7 and 
that, the functions a{x) t f . Under these conditions all integrals 
appearing exist by Theorem 1. Properties I to VI still hold, as one can 
easily prove, without these conditions, provided only that all integrals 
appearing are known to exist. In fact, a property like V still holds if 
only two of the integrals appearing are assumed to exist, for then the 
thud does also by virtue of the theorem concerning the limit of a sum of 
two variables. As a consequence, we see that, if f(x) E C and a(x) - 

“l(as) + «.(*), where «,C) , T , «(*) e J, then ff^d^x) exists and 

(3) jf f{x)da(x) = ffftx)d* ,(*) + ff f(x)das(x). 

a 4‘? A fUnCti°n a(X) * °f b°Unded VaHaiion ™ «» interval 

«(£} = cti{x) + aj(x), 

where *i(a) e f and a2{x) E J, in a £ x £ b. 

Example A. The function sin x is of bounded variation in 0 £ x £ » 
For, we may take 

STIELTJES INTEGRAL 

ai(x) = sin x 
- I 

cn{x) = 0 
-- sin x 
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0 £ x £ ir/2. 
ir/2 £ X £ir 

0 £ x £ v/2 
it/2 

We might equally well have defined ai(z) to be 2 
and «a(x) to be sin x — 2 in x/2 £ x £ v. Clearly, 
there are infinitely many possible definitions of 

«i(x) and as(x). 

[n accordance with the above remarks, it is clear that, if f(x) e C 
and a(x) is of bounded variation in a £ x £ b, then the integral on the 
left of equation (3) exists and has the value given by the right-hand side. 

Example B. f(x) e C in 0 g a: S 2; a(i) = 1 except that a(I) = 0. 

Take 
«,(*) =0 0 £ x £ 1 

= 1 1 < x £ 2 
= 1 0 £ x < 1 
= 0 1 £ x £ 2. 

Then 

ff f(x)dcn(x) =/( 1), j*mda2(x) = —/(I), 

ff f[x)da{x) =/(l) -/(I)'= 0. 

EXERCISES (2) 

1, Under the assumptions of §2.1 prove Properties I, II, III. 

2. Same problem for Properties IV and V, 

3, Same problem for Property VI. Explain what to do about a 
subdivision of (a, h), no point of which coincides with c. 

4. Prove Properties VII, Vfll and IX. 

5. State and prove Properties VII, VIII and IX, if <*(#} e j. 

In the next three examples use the method of 

6, j* x dsin x = ? 

7* J* cos x dsin x = ? 

8. 6llidcos x = ? 

9. Prove equation (1) by both methods suggested in the text. 

ID. If a(x) — 2 except in the interval ( — 2, 2) where a(x) — x, find 

Ja^ z*da(x)' 
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11. Define a(x) so that 

J™ f(x)d<x(x) = /CO) - /(I) + 2/(5) - 3.7/(3.7) + 4/(10), 

where 

f(x) e C in 0 S a; S 10, 

12, In Example A, find 

JQ x dai(x), Jo x doti(x), Jj x da(x) 

and verify equation (3). All properties of the table and equation (2) 
may be used whenever applicable. 

13. In Example B find 

and check by Property VI, 

14, In Example Bf find 

///(*) da{x) 

directly from Definition 3, 

16, Show that Bin 3x is of bounded variation in (0, t). 

16, Same problem fpr |sin 3x\. 

17, If tx(#) is of bounded variation in (a, 6} and the points { a:* J J 
form a subdivision A of (a. b), show that there exists a constant M such 
that 

n 

2 \a(Xi) — < M 
i = 1 

for all A. This property can be shown to be equivalent to the defining 
property and is usually taken as the definition. 

§3. Integration by Parts 

One of the most useful processes used in the theory of Stieltjes 
integrals is integration by parts. We develop the formula in the present 
section. 

3,1 Partial summation 

Let A he an arbitrary subdivision ol (a, b) and let <7A be defined for a 
function f{x) as in Definition 3, 

71 

^ = T /(&)[«(£*) — «(Xfc_i)], 

By rearranging the terms in this sum, we have 
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(2) ri = £ «(**)[/(&) -/(fa+i)l - «) 

The process employed in the rearrangement is of frequent occurrence in 
mathematics and is called partial summation. The similarity of equation 
^2) to the familiar formula for integration by parts of Riemanu integrals 

is evident. 
Note that the sum (2) resembles closely the sum (1), the functions 

/ and a being interchanged and the points & being replaced by xk. But 
there is one important difference. The points {&)r\d° not form a 
subdivision of (a, b) since £1 need not be a and may differ from b. We 
can remedy this difficulty be defining fa =* a and £„+i = b and by adding 
and subtracting the terms a(xo)ftta) ~ a(a)f{a) and a(®„)/($»+i) - 
a(b)f{b) to the right-hand side of equation (2). We obtain 

(3) 

ra §► 
2 «(**)[/(£*) - /(&■»)] + <x(b)f(b) ~ «(a)/(a). 

Now the points {&IS+1 form a subrlivision of (a, b), except for the fact 
that in certain cases £o and £i coincide or ij» and i«+i* If this happens, 
the term of the sum (3) corresponding to A; = 0 or k = n disappears. 
Hence, the sum (3) is always of the type appearing in Definition 3. 
Since the £* and Xk occur alternately on the line, in so far as they do not 
coincide, it is clear that as ||A|1 —> 0 the norm of the subdivision formed 

by the points [ also —* 0. 

3.2. The formula 

Wc state the main result as a theorem. 

Theorem 2. 1. f(x) e t a £ x £ 6 
2. «(*) e C a^x^b 

(4) -5 j*f{x)da(x) + j* <x(z)df(x) = a(b)f(b) — «(a)/(o). 

To prove this, let A be an arbitrary subdivision of (a, b). Form 
the sum (1) as prescribed by Definition 3. Rewrite it in the form (3). 
Let ||A || —> 0. Then, by Theorem 1, the right-hand side of equation (3) 
approaches a limit. Hence, the left-hand side does also, and we obtain 
equation (4). Observe that we have proved that a monotome function is 
integrable with respect to a continuous function. Also, since f(x) and 
«{ar) appear symmetrically in formula (4), it is clear that the hypotheses 
may be reversed to read f(x) e C and a(x) e |, As in §2, we may 
replace monotonic functions by functions of bounded variation. 

Let us do Example B of §1 by the present method. Clearly f{x) e C 

and a(x) e f . By equation (4) 

j*f{x)da(x) = 1 - j[2 a(x)df(x). 
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The integral on the right is zero by Property II, §2, since/(x) is constant. 
The result may also be obtained immediately from Property I. 

I'jXample A. Find ^ x d|xj by two methods. 

By formula (4) 

/_\ *4e| = *1*11!.! - /J, \x\dx = 2-1 = 1. 

By Property VI 

*4*1 = l^xd(-x) + jf1 xdx « £ + £ = 1. 

EXERCISES (3) 

7n the following e^cmses [x] means the largest integer £ x. For 
example, [*■) = 3 and (3) — 3. 

1. [ xde** = ? 

f*/4 
2. / x rftan x = ? 

/*/6 

3e ^ (x* + I) d[x\ = ? 
Jo * 

4. e*d{:c + [z]} = ? 

»■/: 
[|*|]4|x| = ? 

6* (*s + [xl)d!3 — x| -* ? 

7- 
as ? 

8* Compute the same integral from —2 to 2. 

[x]rf[2x] - ? ».r 
Jx 

rx 
10. Does / [2z]d(z] exist? 

11. Show that if /(a;) e C1 and «(z) e C in a. ^ x g b then 

f(x)da(x) 
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exists. 

12. If fix) and ff(x) e C in a £ x £ & and 

«(*) “ f g(t)dt 
J a 

prove that 

137 

o £ x £ &, 

f(x)da(x) = f(z)g(x)dx. 

§4. Laws of the Mean 

As in the ordinary theory of integration, there are two very useful 
moan-value theorems for the Stieitjes integral. We shall prove them 
here. As corollaries, we shall obtain the familiar laws of the mean for 
Riemann integrals. This method of treating the Riemann integral 
as a special case of the Stieitjes integral is particularly useful in the 
proof of the second mean-value theorem since it avoids the partial summa¬ 
tion necessary in the usual proof. That process is now subsumed, once 
for all, in the process of integration by parte. 

4.1 First mean-value theorem 

Theorem 3. 1. f{x) E C 
2. tt(at) e t 

(1) J*f{x)da(x) = /(£) f*da(x) 

a £ x £ & 
o £ x £ b 

a £ £ ^ b. 

Set 
M = Max f{x), 

a 
m — Min f[x). 

a S& 

Then by Property VII, §2.1, we have 

m g f(x) ^ A1 

(2) 

a £ x 5 b 

— oc(a)\ 5 j* f{x)dtx(x) g M[a(b) — or(a)]. 

If a(6) = a(a)t then a(x) is constant and both sides of equation (I) 
are zero, no matter what value of £ is chosen. Since the continuous 
function f(z) takes on every value* between m and M in the interval 
(a, &), there is certainly one point £ where it takes on the value 

l«(&) - «(a)]-1 fabmd«(x), 

which does lie between m and M, if o(&) a{a), by inequalities (2). 

That is, 

/(£) = [«(&) - «(a)]-‘ Jbf{x)da(z) a £ £ £ b. 

See Exercise II, §6 
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This completes the proof of the theorem. 

Corollary 3. 1. /(as), g{x) tC a £x£b 
2. g{x) a 0 a £ x £ b 

-► fa f(x)s(x)dx = /(f) £ g(x)dx a £ f g 6, 

Set 

«<*) = J* g(Qdl a £x £b. 

Then* by equation (2), §2.3, equations (1) and (3) are equivalent. 
Clearly «(*), as defined by equation (4), is non-deereasing by virtue 
of hypothesis 2. It could be shown that f may always be chosen different 
from o and b in equation (3). The same is not true of equation (1). 

4.2 Second mean-value theorem 

Theorem. 4 1. f(x) e f fl 

2. «(*) e C a 

(S) -> J* f(x)da(x) = /(a) da(x) + f(b) j* da(x) 

a 
By Theorem 2 and Theorem 3, 

£ x £ b 
£ x £ b 

£ f £ b. 
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on the left-hand side of equation (7) is unaltered by changing the defini¬ 

tion of A*) at x = o. 

Example A. Show that the integral 

(8) ' f0m f(x)g(x)dx 

converges if f(x) e j. and tends to zero as x —* » and 
if there exists a constant M such that 

j^%(x)dxj < M 

for all positive R. We are assuming that/(x), g(x) t C 
in 0 £ x < oo. Let e be an arbitrary positive number. 
It will be sufficient* to show the existence of a number 
Rt such that for all numbers R', R" greater than Rq 

| j* f(x)g(.x)dx| < e. 

Under the present hypotheses, it is the second term 
on the right of (6) which may be made to disappear. 
Hence, 

fabf(x)da(x) = /(&)«(&) - f(a)a(a) - £ a(x)df(x) 

= f(b)a(b) ~ f(a)a(a) — a(f) jf‘ df(x) a £ $ £ b. 

Rearrangement of terms in the latter equation gives equation (5). 

Corollary 4.1. 1. f(x), g(x) « C a£x£b 

2. f(x) e | a £ x £ b 

(6) -+ f*f(x)g(x)dx = f(a) J* g{x)dx + f(b) f* g(x)dx 

a £ f £ b. 

This follows at once from Theorem 4, if <*(*) is defined by equation (4). 
Equation (6) is known as the Weierstrass form of Bonnet's theorem. 

Corollary 4.2. 1. f{x), g(x)tC a£x£b 

2- f{x) t | a ^ j ^ j 
3. /(x) 0 a g x ^ b 

^ * X /(x)g(x) dx — f{b) Jbg(x) dx a £ ££ b. 

Let us alter the definition of/(as) so that f(a) = 0. Then f(x) remains 
non-decreasing. Equation (8) is still valid, but the first term on the 
right of the equation now disappears. Moreover, the Riemann integral 

* Corollary 3 was proved directly in §9.1, Chapter I. 

j“" f(z)g(x)dx\ £ f(R')\jil g(x)dx\ R' £ l £ R" 

< 2Mf(R'). 

Since f(R) tends to zero with 1 /Rt the existence of /?0 

such that 

2Mf(R') < € 

for all Rf > R, is evident, and the proof is complete. 

EXERCISES (4) 

1, By use of Corollary 3 show that, if f(x) e Cl in a ^ x ^ fe, 

m -m 
2, Give an example to show that the relation (1) may not be altered 

to read a < £ < b. 
Hud: Choose a(x) as a step-function with jump at a or at 

3, Prove Theorem 3 if 11 t u Is replaced by “ l " 

4* Solve the same problem for Theorem 4. 

5, State and prove two results like Corollary 4.2 with f(x) 5 0 and 

monotonie. 

* Compare Theorem 7, Chapter VIII. Cauchy's criterion applies equally well to 
a continuous variable like the present JZ. 
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6. Prove Corollary 4.1 from Corollary 4.2. 
Hint: Consider the non-negative function fix) — f(a). 

7. Under the hypotheses of Corollary 3, show that, if 

J* g{x)dx = 0, 

then g{x) is identically zero in a ^ x £ b. 

8. Under the hypotheses of Corollary 3, show that the integral on 
the left of equation (3) cannot equal either of the values 

m jT g(x)dx, M J* g{x)dx 

if f{x) is equal to m or M at a or 6 only and g(x) is not identically zero. 
Hint: Consider, for example, the integral 

£ lf(x) - m]g(x)dx. 

9. Show that the relation (3) may be altered to read a < £ < b 
Hint: Use Exercise 8. 

10. By use of Example A prove that the integral 

converges, 

11. Same problem for 

f “ sin x 

Jo x 
dx 

f * sin x 

Jo X* 
dx 0 < p < 1. 

12. Show that the integral (8) converges if 

1- f(z), g(.x) tC 0 g X < co 
2- fix) e J,, £ 0 0 i r < a 

3- JQ g{x)dx converges. 

13. Illustrate Exercise 12 by an example in which /(<w} ^ 0. 

14. Under the conditions of Theorem 3, find the limit 

lim I* f(t)dtx(t). 

16. lim [x e!d(t + [f]) = ? 

16. If f(x) tC m a £ X ^ b and if gfz) = f(x) except that g(a) ^ 
f(a) + kj h 9* 0, show that 

f*f(x)dx = j* g(x)dx. 
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§5. Physical Applications 

In §1 we pointed out that the Stieltjes integral is useful in the defini¬ 
tion of certain physical concepts which involve a combination of discrete 
distributions and continuous distributions of mass. We illustrate here 

by a few of the many possible examples. 

5.1 Mass of a material wire 

Let us take the physical notion of mass as undefined in our mathe¬ 
matical system. Of course, the mathematical situation we arc about to 
describe can be closely approximated by a physical one in which mass 
is well defined. A particle can be approximated by a small pellet of 

matter, and a curve with a mass distribution can be nearly realized by a 
fine wire of heavy material. The masses of these physical objects can 
be determined by the process of weighing. 

Let us consider a plane curve which can be given parametrically, 

the arc s being the parameter: 

(1) x = x(s), y = yis). 

Assume that x(s), y(s) e C in 0 £ s l, where l is the total length of 
the curve. The position of a point on the curve can be determined by 
a single coordinate s. A particle on the curve is to be thought of as a 
quantity of mass situated at a geometrical point of the curve. We 

may define it mathematically as follows. 

Definition I. A particle of mass m at a point s of the curve (1) is the 

number*pair (s, in). 

Definition II. 
M{s) such that 

A distribution of mass on the curve (?) is a function 

M(0) = 0, M(s) e T 0 ^ s ^ 

The mass of the segment of the curve between any two points s ~ a and 

s = b(0 <• a <b £ l) is 

(2) M{b) - M(a). 

If, for example, the distribution consists entirely of the n particles 

(3) (sjc, mk) k = 1, 2, ■ • • n, 

where 0 < si < s2 < ■ ■ ■ < sn £ l, then 

(4) 

M(s) = 0 
= mi 

= i»i + * * ' + rru. i 
= mi + ’ ’ ' + rru 

0 s < Si 
Si ^ s < Sj 

s*_i g s < s„ 
S* 5 s ^ l 

That is, M(s) is a step-function with jump mk at the point s*. We 
make the convention that a particle situated at the point b of Definition 
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IT is to belong to the segment (a, b) and a particle at a is not to belong. 
With this understanding, the mass of the segment (a, b) is given by (2}f 
when M(s) is described by equations (4). The total mass of the wire 
is 3f (l). The mass of the particle at s* is 

mk — M(sk) — — ) k — 1, 2, ■ * * , n. 

Definition HL A distribution of mass M(s) is continuous i—* 

M(s) € CK 

Definition IV* The density of a continuous distribution M (s) at a 

point a is Mr(a). 

This definition conforms with our intuitive notion of density. Aver¬ 
age density of a wire is thought of as mass per unit length. The average 
density of the arc (a, b) of Definition II is 

M(b) - M(a) 
b — a [ 

and the limit of this is M'(a) as b approaches a, For a continuous 
distribution, the total mass is the integral of the density 

M{1) = f M'(s)ds. 

For an arbitrary distribution, we have a similar formula using the 

Stieltjes integral 

M{1) = /W(s). 

5.2 Moment of inertia 

Assume as known the formula for the moment of inertia about an 
axis of a set of particles. For the set (3) it is 

n 

k-l 

where r* is the distance of the particle (s*, m*) from the axis. Let us 
observe the following facts about this formula. 

A. If a total mass is divided into several parts, the moment of inertia of 
the whole is the sum of the moments of inertia of the parts, 

B. If new mass is added, the moment of inertia is increased. 

C. If mass is moved farther from the axis, the moment of inertia is 
increased. 

It is implicit in B that, if mass is removed, / is decreased. J Jkewise, 
it is to be understood in C that, if mass is moved nearer to the axis, / 
is decreased and that, if it is moved parallel to the axis, I is unchanged. 

Let us now assume that the moment of inertia of any distribution 
is to satisfy these three properties and is to be given by formula (5) if 
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the mass is concentrated in the set of particles (3). Wc shall show that 
under these assumptions the moment of inertia of an arbitrary distribu¬ 
tion is a uniquely determined number equal to a certain Stieltjes integral. 

* Let us find the moment of inertia about the x-axis of a distribution 
U(s) on the curve (1). Let the points |s*U be a subdivision A of the 
■ terval 0 5 s S 1. By Property A, the moment of inertia desired will be 

where h is the moment of inertia of the arc (s*,-i, sk). Set 

2/(40 = ^ Max^ 12/0)| 

2/0*) = Min \y(s)\. 
tt-l 

The mass of the arc (s*_i, s*) is M(sk) - M(sk-i). Tf this mass were 
concentrated in a particle at s'k or at 4', mass would have been moved 
nearer to or farther from the x-axis, respectively. Hence, by Property 

C we have 
n ft n 

y 3/*o*)[mo*) - a/(ss_i)] 5 y /* £ y v'woiafw - AfOfe-i)]- 
k-l »-l k~L 

By Theorem 1 both extremes of these inequalities approach the same 

limit, as IIAII -» 0. Hence 

(6) I = /0' V^)dM(s). 

Observe that we have not used Property B. 

Example A. Let the curve (1) be the straight line 

V = ^/% X = 1 " ^5 0 S s g V2- 

Lot the distribution be a combination of a continuous 
one in which the density is proportional to the distance 
from the end point s — 0 ami a discrete one consisting 

of the two 

explicitly, 

particles 
&■> 

(v/2, 4). More 

M{s) = + Mj(s), 

JfiW = £** = 5 

Mj(s) = 0 0^s<l/V2 
= 2 l/\/2 g s < V2 

= 6 « = V2- 

where 
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Then 
f V*5 „2 f v'S . 

/ = j0 | rf.Vi(s) + J1( | (iiif2<s) 

-/"V55*+K;^)’2+5<V5,’4=6- 

Example B, A plane lamina is bounded by the four curves 

3 - a, 2; “ fr, y — 0,. y — /(a:) > 0, 

where f(x) z C in a ^ ^ b. The density is constant 
along vertical lines, so that the distribution can be 
described by a function of one variable M(a:) . The 
mass of a narrow vertical strip varies as its height. 
Find the moment of inertia of the lamina about the 
y-axis. 

Let the points {^} J be a subdivision A of (a} b)> 
Erecting ordinates at the points Xk divides the lamina 
into n vertical strips. Let mk and Ik be the mass and 
the moment of inertia, respectively, of the klh vertical 
strip. Let f{x'k) and f{xk) be the minimmn and maxi¬ 
mum ordinates of the klh strip. By Property B, we 
have 

/(4)[j1/{xi.) — M(xit_i)] < mk 

S /{*£')[M(zk) - M(xk^)l 

By Properties A and C, we see that 

n 

1 xLJ«)[M(xk) - M(xk^)] £ I 
h-l 

n 

g y x*f(x'k')[M(xk) - 
jt-i 

Now by use of DuhameLs theorem, §6.5, we have 

(7) I = j* x*f(x)dM(x). 

We have assumed that a > 0, but this assumption was 
not essential to the final result.. 

EXERCISES (5) 
1. Find the moment of inertia about the y-axis of the wire of §5.2. 

2. Illustrate Exercise 1 by the wire of Example A. 

3. Find the moment of inertia about an axis perpendicular to the 
coordinate plane at the point (xn, i/0) of the ware of §5.2. 

STIE LTJES INTEGRAL 145 Ch. V §6.1] 

4. Illustrate Exercise 3 by the wire of Example A with xB = yo = 0. 

5. Alter the definitions (4) of M(s) if si = 0. 

6. Find I in equation (6) if the curve (1) is the circular arc 

X = sin 3, y — cos s 0 fi s vr/2 

and the distribution consists of a continuous part with density Z>(s) = s 
jind of three particles, of masses 1, 2, 3 at the points s = 0, */4, r/2, 

respectively. 
7. Check the result of Example A by finding the explicit definition 

of M{s) hi 0 ^ s ^ 1/V2 and in 1/V2 < s ^ V2 and by integrating 

bv parts. 

8. Derive formula (7) when b < 0 and also when a < 0, b > 0. 

9. Illustrate Example B with a = 0, b - 2, f(x) = e, 

M{x) = e* 0 ^ x < 1 
* == 1 < x ^ 2. 

10. Write a set of properties like A, B, C for the moment of mass, 

and thus discuss the center of gravity of the wire of §5.2. 

11. Find the coordinates of the center of gravity of the wire of 

Example A. 

12. Find the coordinates of the center of gravity of the lamina of 

Example B. 

§6. Continuous Functions 

We shall prove here a few of the important properties of continuous 
functions. Some of them we have already used in view of the fact that 
they appear self-evident to most students. To investigate the more 
delicate aspects of continuity, we need to base our study firmly on the 

definition, in terms of limits, of continuity. 

6.1 The Heine-Borel theorem 

We prove first a result discovered independently by two mathe¬ 
maticians and hence referred to by the hyphenated name. Probably, 
it will seem obvious to most students wfithout proof. Let there cor¬ 
respond to each point c of the closed interval a £ x £ h a number 0„ 
and an interval Ic of length 2oc with c the center point, 

(l) c~5e<x<c + Se. 

The Heine-Borel theorem states that a finite number of the intervals 
(1) can be chosen which will “cover” the whole interval a ^ x S b. 
That is, every point of a £ x ^ b will be in at least one of the above 
mentioned finite number of intervals (1). Tn order to emphasize the 
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need for proving this result, let us give an example to show it false if the 
interval (a, 6) were open instead of closed. 

Let a = 0, b = 1, and define Ie, for 0 < c < 1, as 

(2) Ie- c/2 < x < Zc/2. 

That is, fle = c/2. No finite set of the intervals (2) will cover the 
interval 0 < x < 1. For, consider such a set, Je„ , Ic„ where 
0 < ci < Ct < • * • < c„. Of these, the interval reaches farthest 
to the left. Hence, no point to the left of ci/2 is covered by the set. 

Theorem 6. 1. To each c, a £ c £ b corresponds an interval (1) 
-► There exist points Ci, Cj, ■ ■ • , cn of a £ x £ b such that 

every point of the interval a £ a: £ b is in at least one 
of the intervals Ic„ Ie.. 

Call a point A of the interval /, a £ a: £ b, accessible if the interval 
a £ x $ A can be covered by a finite sequence of the intervals 
Clearly, if A is accessible, every point of / to its left is also. Hence, there 
must either be a point B of / dividing accessible points from inaccessible 
ones, or else all points of I are accessible. (Some points are accessible, 
since all points of I in /„ are covered by the single interval /„.) But 
the existence of the dividing point B, B < b, is impossible. For, if 
let, is a set of intervals covering (a, B — 6), S = Sfl/2, then 
le„ • • • , /(„, Is covers a ^ x £ B + a, so that there are accessible 
points to the right of B. This is a contradiction, so that b must be 

accessible. 

6.2 Bounds of continuous functions 

We show next that, if/(a:) c C in a g x £ b, then fix) is bounded there. 
This result would be false in an open interval. For, 1/a: tCinO <i S 1, 
but 1/at is certainly not bounded in 0 < x 5 1. 

Theorem 6. 1. fix) t C a £ x £ b 

-► There exists a number M such that 

\f(x)\ SM aZx£b. 

Define fix) outside (a, b) to be f(a) for x < a and f(b) for a: > b, 
so that fix) e C in — oo <*<«:. This is done so that the end points 
a and b may be interior points of intervals (1) in applying the IIcine-Borel 
theorem. Let a £ c ^ b. Since fix) e C at x = c, a number oc cor¬ 

responds to t — 1 such that 

\f(x)-f(,c)\4 1 \x-c[<5', 
whence 

(3) |/(a:)I £ |/(c)I + 1 = Me «/, 

Now, by Theorem 5, we choose JCl, covering a % x ^ b. 

Set 

(4) M = Max (Me,, Mc„ • • • , Me.). 
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Since an arbitrary point x of a £ x £ I> is in some In, k — 1,2, ■ ■ ■ ,n, 

vve have by (3) and (4) 

|/(*)| £ MCk£ M a £ x 5 b, 

and the proof is complete, 

6.3 Maxima and minima of continuous functions 

We shall prove next that if fix) t C in a £ x £ b, then f(x) has a 
maximum M in a S x £ b and there is a point c such that /(c) = M, 
a £ c £ This result would also be false in an open interval. The 
function /(*) = x has no maximum in the interval 0 < * < 1. 

1. f(x) t C a£x£b 

There exist numbers mi, M, Ci, Ci such that 

m £ fix) S M a £ x £ b 
f(ci) = mv, f(Ci) = M a £ Ci, c* £ b. 

It will be sufficient to prove the part of the theorem which concerns 
c> and M, for this result can then be applied to —fix) to prove the rest. 

By Theorem 6, fix) has an upper bound in a ^ x £ b. Let M be the 
least upper bound. Then fix) £ M, and we must show that the equality 
holds for at least one value of x in the interval a £ x £ b. Suppose 
the contrary. Then M — fix) > 0 and [iW — /(®)]_1 e C in a ^ x % 6. 
By Theorem 6, [il/ - fix)\~l is bounded. But this is impossible since 
f(x) becomes arbitrarily near its least upper bound M in (a, b). Hence, 

the existence of the desired number c2 is assured. 

6.4 Uniform continuity 

Definition 6. The function f(x) is uniformly continuotis in a £ x £ b 
4^ l0 an arbitrary e > 0 correspojuis a number 5 such that for all points 

x' and x" of a £x£b with \x' - x"\ < 3 we have 

I/(*') “ /(*") l < «■ 
We shall show that fix) t C in a § x g ft implies that/(x) is uniformly 

continuous there. This result would not hold for an open interval, as 
the example/(x) - ar1 in 0 < a: < 1 shows. Here the difference 

fix') - fix' + 5) = b)> 

> 0, can be made arbitrarily large by choosing x' near 

1. fix) t C a%x£b 

f(x) is uniformly continuous in a £ $ ^ b. 

for any fixed 5 
Zero- 

Theorem 8. 

Theorem 1* 
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Extend the definition of/{x) to (— f so) as in the proof of Theorem 6. 
To an arbitrary e > 0 corresponds for each ct a g c g bf a number dc 
such that 

I/(*) — /(c) I < e/2 

for all z in the interval /«: c - < x < c + By Theorem 5 there 
exist intervals, finite in number, 

(5) /cp I* . . . /c, 

covering (a, 6). Those end points of the intervals (5) which lie in (a, 6) 
form with the points a and b themselves a subdivision of (a, b). Choose 
the number 5 of Definition 5 as the length of the smallest of the sub' 
intervals into which the Interval (a, b) is divided by the subdivision* 
Now let x* and xu be points of (a, b) for which \xf — x"\ < 6* Then it is 
clear that there can be at most one of the points of subdivision between 
x' and In fact, both xf and x'f lie in a single one of the intervals (5), 
say in /c*. Consequently, 

l/CO - /(*")t £ L1W) -/(CO| + I/(*'') - f(Ct)\ < «/2 + e/2 = e. 
This completes the proof of the theorem* 

6*5 Duhamel’s theorem 

As a first application of uniform continuity let us prove for Stieltjes 
integrals a result analogous to one form of the familiar DuhamePs 
theorem for Ricraann integrals, 

Theorem 9. 1. f(x)9 g(x) tC a gx g b 
2* ct(a:) t | 

3* [x*}5 is a subdivision A of (a, 6) 
4* Xk-i g ik g xki xm £ iit g Zk k = 1, 2, * * * , n 

n 

(6) -? y f(.tk)g{nk)[a(xt) - a(a:fc_i)] = fbf(x)g(x)da(x}. 
Ja 

Set a a' equal to the sum on the left of equation (6), and a a equal to 
the same sum in which m = ft, k - 1, 2, ■ • • , n. Let e be an arbitrary 
positive number and let 5 be the number which corresponds to it, accord¬ 
ing to Definition 5. Then if ||A|| < 6, we have, by the uniform continuity 
off{x), 

n 

' |o> — ff/i < « y |?(W [[«(**) “ a(x*-i)I 

< «[<*{/>) — a(a)J Max \g{x)\. a £* £5 
Hence, 

lim a*' = lim <r4 = fbf{x)g{x)da{x). 
Ull-*o lla!l->0 J • . 
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This completes the proof. Of course, if a(x) = x, we have a conventional 

form of Duhamel’s theorem. 

6.6 Another property of continuous functions 

As a further application of uniform continuity, let us prove that, if 
f{x) t C in a £ x £ b and if f(a)f{b) < 0, then f(X) = 0 for some X, 
a < X <b. Suppose the contrary. Then 1 /fix) cC in a ^ x ^ b and 
is bounded there. Let e be an arbitrary positive number. By uniform 
continuity, there is a sequence of points between a and b such that the 
variation of fix) between any consecutive pair is less than e. Now fix) 
must change sign between two consecutive points of the set, so that 
j/(:r)| < * at each. Hence, \l/f(x)\ > 1/e, and 1 //(*) is not bounded. 

The contradiction is evident. 

6.7 Critical remarks 

For a thorough understanding of the proofs of Theorems 5 and 7 
a fuller appreciation of the structure of the set of all real numbers is 
needed than we have hitherto assumed. For example, in §0.3 we used 
the phrase “least upper bound.” Is it entirely evident that such a 
number exists? The fact that every bounded set of numbers has a 
least upper bound anti a greatest lower bound is, in fact, a property 
of the real number system. The property states essentially that there 
are no “holes” in the system. For, consider a system which had no 
number zero, for example. What would then be the least upper bound 
of all negative numbers? Every positive number would be an upper 
bound; no negative number could be. Yet there is no smallest positive 
number, so that a least upper bound would not exist. Again in §6.1 
the existence of the point of division B again depends on the existence 
of a least upper bound for the set of all accessible points. 

The following may be taken as a characteristizntion of the least upper 
bound A of a set E of real numbers. To an arbitrary positive number 
t corresponds at least one number a of E such that a A t. More¬ 
over, all points of E arc less than or equal to A T\ e make the convention 
that the least upper bound of a set which is unbounded above is + <», that 
the greatest lower bound of a set which is unbounded below is - ®. 

EXERCISES (6) 

1. To the intervals (2) add two more: the interval |a;| < .1 cor¬ 
responding to the point a: = 0 and the interval |s — 1| < .1 corresponding 
to the point x = 1 Describe explicitly a finite number of these intervals 
which cover the interval 0 ^ x ^ 1. Give also a second set involving 

a larger number of intervals. 

2. For the intervals (1) take Se = 1 — c when 0 g c < 1 and define 
11 as the interval |z - l| < 10"10. From this set, find a finite set of 
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covering intervals for the interval 0|ig l. What is the smallest, 
number of covering intervals that can be used? 

3. Give an example of a function defined on a £ x £ b which has no 
maximum value. 

4. In Definition 5 choose f(x) = r2 on 0 S r S 1. If e = .1, find 
the least upper bound of numbers S corresponding. 

5. In the proof of Theorem 8 give details to show that x' and x" both 
lie in a single interval (5). 

6. Prove the Heine-Borel theorem, modified so that the intervals 
(1) include their end points. 

7. Prove the Heine-Borel theorem if c is a point not the mid-point 
of the open interval Ic corresponding. 

8. If M(s) is the function defined by equations (4), §5.1, describe 
those of the four following functions which are well defined: 

f{x) — Max 
0£» S* 

ff(ar) = Min 
OSiS* 

ifcf(s) 

M(s) 

h(x) ~ Max M(s) 
0 Saa <x 

h(x) = Min Jiffs). 
0 &s<x 

9. Same problem if Jlf(s) is replaced by s + il/fs). 

10. State and prove a form of DuhamePs theorem involving the 
product of three continuous functions. 

11. Prove that a continuous function takes on every value between 
its maximum and its minimum. State the result in precise theorem 
form. 

12* Find the least upper bound flub) and the greatest lower bound 
(gib) for all the values of the following functions: 

x, e~**, x2e~*} £r^ (x + l)(sin x)/x< 

What can you say of the maxima and minima of these functions? No 
proofs are required. 

13- Give an ^-characterization of a finite gib. 

14* Give an c-characterization of an infinite gib* 

15- Give an e-characterization of an infinite Iub. 

16- Prove 

gib a — — Iub (—a). 

17- Prove 

Iub [f(x) + g(x)] ^ lub fix) + Iub g(xl 
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Give examples to -show that either the equality or the inequality may 

occur, 
§7. Existence of Stieltjes Integrals 

By use of the results about continuous functions established in the 
preceding section, we can now give a proof of Theorem 1. 

7.1 Preliminary results 

For an arbitrary subdivision A of (a, h) let ns define, in addition to 
the numbers <ta of ^1* two additional numbers, and TVe assume 
throughout this section that f(x) z C, a(x) e f inaS*S'6. Set 

Mk = Max fix), mk = Min fix) 
£*-l S* 

Si = y Mk\a(xk) - (Xi_i)], fid = 2, “ “C1*-*)!- 
i-i fc-l 

Clearly, s* S S*. 
We say that a subdivision A of (a, b) undergoes refinement if new 

points of subdivision arc interpolated among those of A. We can now 
prove some results useful in the proof of Theorem 1. 

Lemma 1.1. S&t j , Sa e f under refinement of A. 

Suppose Ai is a refinement of A obtained by introducing a single 
point t between x±-i and xt. Let and M" be the maxima of f(x) in 
(xi-i, f) and (t, Xi), respectively, so that neither of these maxima is 

greater than Mi. Hence, 

Mi[a(t) — a(xi-i)] + M'/Mxi) — a(i)] ^ Mi[a(xi) — a(s5i_i)], 

and jSAi £ jSa. Since any refinement of A can be accomplished by suc¬ 
cessively adding a single point, one half of the result is established. 
The other half may be proved in like manner. 

Lemma 1.2. 1. Ai and A« are subdivisions of (a, 6) 

Let Az be a third subdivision made up of all the points of Ai and A*f 
coincident points being counted as a single point- By Lemma 1,1, 

&A, = ^ Sa, S $Ar 

Since Ai and A^ occur symmetrically in the hypothesis, they must do 
so in the conclusion, so that g S&2 also* 

By Lemma 1.2, it is clear that, for all subdivisions A, the numbers Sa 
have a least upper bound s, the numbers Sa a greatest lower bound S 

and that s ^ S* 

Lemma 1-3. 1. f(x) t C 

-► a - S. 

a % x ^ b 
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By Theorem 8, f(x) is uniformly continuous in a g x £ b. Let e 
and 5 be the corresponding numbers described in Definition 5. Let A 
be a subdivision of (a, b) with ]|Aj] < 5. Then . 

n 

0 ^ S& — $a = ^ [Mk — mjt][a(Xjfc) — a(Xk~i)] ^ 4«(&) — a(a)] 

* Jt-l 

(1) 0 ^ SA — Sa = (Sa — S) + {S — s) + (s — sa) g e[a(fo) — a(a)]. 

Since each term in parentheses is non-negative, we have 

0 g $ — s £ c[a(b) * a(a)]. 

Since S and s do not depend on A, S — s, and the proof is complete. 

Lemma 1.4, 1. f(x) tC a ^ x S b 

-y lim Si = lim Sa — s — S. 
|[A|—*0 1*11—*0 

For, by inequalities (1) we have, when "A|[ < 

0 ^ Sa - S £ *[<*(&) ~ a{a)) 
0 $ s — Sa S 4ae(&) — a (a)]. 

7.2 Proof of Theorem 1 

By the definition of M* and mki it is clear for any A that sa ^ ^ Sa< 
Since and Sa both approach $ or 5 as [[A —* 0, the same must be true 
of <ta, and the proof is complete, 

EXERCISES (7) 

1* Compute iSi if f(x) — cos x, a(x) — %, a = — ir/2, b — w/2. 

Ans. 7r2~n[ 1 + ctn (r2",p"“1)]. 
, i t . r BUI (fb + 

Hint: \ + cos x + - ■ ■ + cos nx = -———■ 
2 snig 

2. In Exercise 1 show directly that 

lim Sa = fb f(x)da(x). 
it-* * Ja 

3* In Lemma 1.1, prove that % t ] , 
4* Let € and 5 be the numbers described in the proof of Lemma 1.3. 

If Ai and A2 are any subdivisions of (a, 6) such that A|| < 5, ||A2|| < 5, 
show that 

kii — <?Aj\ ^ 2e[a (6) — a(a)T 

5. Let /(x) be zero for rational x and unity for irrational x. Let 
a(x) z | in a 5 * S J with a (6) > a(a). Show that the Stieltjes 
integral 

f{x)da{x) 

cannot exist. 

CHAPTER VI 

Multiple Integrals 

§1. Introduction 

In this chapter, we shall discuss double and triple integrals.. We 
shall follow as closely as possible the analogy with the theory of simple 

integrals developed in the previous chapter. 

1.1 Regions 

We have already discussed in Chapter I regions of the plane. Let us 
collect here the notations which will be needed in the present chapter. 

A domain D is an open connected set of points. That is, every 
point of D is the center of some circle, all of whose points are points of D; 
and any two points of D can be joined by a continuous curve, all of whose 
points are points of D. A domain is bounded if all of its points lie inside 

some square. 
A region R is a closed point set consisting of a bounded domain 

plus its boundary points. We shall assume further that the boundary of 
ft consists of a finite number of closed curves that do not cross them¬ 
selves nor each other. In practical problems, R will usually be given 
in terms of its boundary' curves. For example, if might be the set of 
points between two concentric circumferences plus the points on the 
circumferences. M ore frequently, we shall meet regions that can be most 
simply described by use of functions. Accordingly, we shall have a 

special notation for these. 
Let <p(x) and ${x) « C in a £ * S 6 and <p{x) < $(x) in a < x < b. 

Than, the region Rx, or R[a, b, <p(x), >p(x)l is the region bounded by the 

curves 

x = a, x = b, y = <p{x), y = iKx). 

If (xi, yi) is a point of R* then a g Xi £ 6 and g yi ^ 4>(zi)~ 
A line x — a < x} < b cuts the boundary of R.x in just two points. 
For example, the region R[ —1,1, — Vl — x2, Vl — x2] is the circle 
z2 _j_ yi g We could define in an obvious way a region Ry. The 

region R described above as lying between two concentric circles is 
neither an Rx nor an Rv. It could be divided into four regions Rx, for 
example, by two verticle lines tangent to the inner circle. These vertical 
lines would be counted twice, as the boundary of adjoining regions. 

153 
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A region J? is simply connected if its boundary consists of a single 
closed curve. The concept of the area of a region R will be assumed 
kaolin. Of course, the area of Rz is knoivn from elementary calculus, 
and the area of /? could be defined by use of a limiting process (§10.4), 
The diameter of a region R is the length of the longest line segment that 
can be drawn in R. In the case of a circle this coincides with the ele¬ 
mentary notion of diameter. Observe that, if a region R varies so that 
its diameter approaches zero, then its area also approaches zero. The 
converse is not true. 

1.2 Definitions 

We begin by dividing a given region R of area A into subregions. 
As in the case of simple integrals, we introduce certain simplifying 

notations. 

Definition 1. A subdivision A of a region R is a set of closed curves* 
I Ck 11 which divides R. into n subregions if* of area ASt, k = 1, 2, • • • , n. 

For example, in the adjoining figure, R is divided into 12 subregions. 
In all but two of the subregions the boundary curve 
Cl is composed partly of the boundary of R. One con¬ 
venient method of making a subdivision is to draw 
equally spaced lines parallel to the axis. If the distance 
between the lines is small compared with the diameter 
of R, most of the subregions will be squares. 

Definition 2. The norm ||A|| of a subdivision A is 
Fig, 8. 

the maximum diameter of the subregions produced by the subdivision. 

Definition 3. The double integral of f(x, y) over the region R is 

(1) 
n, 

/ Lf(x, y)dS = lim V /(&, Vt)ASt, 

where (&, til) is a point of Rt. 

I1 or clarification of the meaning of the limit (1) see remarks folloYYring 
Definition 3, Chapter V. 

1.3 Existence of the integral 

The limit (I) may or may not exist depending on the function/(z, y). 
We give at once a sufficient condition for existence. 

Theorem 1. 1. f(x, y)tC {x, y) s. R 

/ JR /(*, y)ds exists. 

* It m sufficiently general for all practical purposes to suppose that these curves 
arc of such a nature that two subdivisions superimposed on top of each other make a 
new subdivision (forming a finite number of subregions). This is true for example 
if the subdivisions are made by use of polygonal lines. 
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The proof of this theorem ivill be given at the end of the chapter. 

Example A. R„ = I?[0, 1, -x, x\, f(x, y) = x. Since f(x, y)tC 
in Rt, the limit (1) exists. Hence, we may choose 
the subregions Rt and the points (|*, ij») in a special 
way. Choose R* a square (except near the lines 
y — + s) of side Ax. With obvious notations, we have 

n. 

f („/{*, y)dS = lim Ax y xk{xt + z*+!) 
/ J« &F—»0 

= Jo' 2xhlx = 2/3. 

Here we have collected in a single term those terms of 
the sum (1) coming from the regions Rk in a vertical 
line. Since f(x, y) = x docs not change on a vertical 
line, the sum in question reduces to a constant times 
the area of a certain trapezoid. 

Examplb B. Rx = 7?[0, 1, 0, ]];/(*, y) = 0, when x and y are both 
rational; f(x, y) = J, when either a: or y is irrational. 
Then the sum (1) may be made to equal either 0 or i 
for an arbitrary subdivision, depending on the way 
in ivhich the points (£*, tj*) are chosen. Hence, the 
double integral of f(x, y) over R does not exist. 

EXERCISES (1) 
1. State Yvhich of the sets of points below is a domain D and describe 

the sets: 
The points (x, y) for ivhich 

(a) 3x — 2y + 1 > 0 
(b) x2 + y' - 1 > 0 
(c) x2 + y* - 1 > 0, la;| < 1, |y| < 1 
(d) — 5 ^ xs — 2x + y2 — iy < —4. 

2. State which of the sets of points below is a region R and describe 
the sets: 

(a) x + y — 1 £ 0, |a;| S 1, |j/l ^ 1 
(b) |*| £ 1, \y\ g 1, |*| ^ M 
(c) z2 + ys £ 4, 1 ^ |*| ^ 2 
(d) (x2 + + z)2 ■& z2 + y2- 

3. Same problem for 
(a) |z + y\ g 1 

(b) 1 S |*| + \y\, 1*1 ^ 1, Ivl ^ 1 
(c) j* -f- #1 + I* - y\ 
(d) y2 — x2 + 2x £ 1. 
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4. Decompose the set of points (x, y) for which 2 £ xs + y2 •& 4 into 
two regions Rx. A point of the set may be a boundary point of both 
regions Rx. 

6. Replace Rz by Ru in Exercise 4. 

6. Decompose the set (c) of Exercise 2 and the set (b) of Exercise 3 
into regions Rz. 

7. Show analytically that a line joining an interior point with an 
exterior point of a region Rx cuts the boundary . Treat all cases. 

§2. Properties of Double Integrals 

Iterated integrals 
We shall set down in this section certain elementary properties of 

double integrals. The proofs of these properties are all simple and may 
be supplied by the student. We shall also introduce the iterated integral. 
It will be seen that this latter is to the theory of integration as partial 
diiTcrcntiation is to the theory of differentiation. Finally, we shall 
express the volume of a solid by use of a double integral. 

2.1 A table of properties 

In the following table,/(x, y), with or without a subscript, is assumed 
continuous in the region R over which the function is integrated; k is a 
constant; A is the area of R. The statement R = Ri + Rt in Property 
IV means that R, Rj, Rt arc regions R of the type described in §1.1 and 
that R is composed of Ri and R?. That is, every point of R is a point of 
Ri, a point of i?2, or a boundary point of both. The regions Rt and R2 
do not overlap and have no points in common except some of their 
boundary points. For example, Ri = R[—1, 0, — y/l — x\ Vl — x2], 

Ri = fl[0,1, - VI - xa, vi - Xs}, R = [-1,1, - Vl - VI - *lj. 

I. / J>- A. 

II. / jR kf(x, y)dS = k f fj(x, y)dS. 

HI. J jR \fi{x, y) +Mx, y)]dS = 

/ fRMx, y)dS + f jjtix, y)dS. 

IV. ft = Hi 

—* / }nf(x>y)dS = f JRlf(x,y)dS + Ik f(x, y)dS. 

V- ft(x, y) g ft(x, y) —> J JRfi(x, y)dS < j JRMx, y)dS. 

VL / S*Kz> = //« \f(x, y)\dS. 

m / fRf(x, ridsj =£ Max |/(x, y)\. 
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2.2 Iterated integrals 

Definition 4. An iterated integral is an integral of Ike form 

I*dxfmm y)d,J' 
This means that for each fixed x between a and 6 the integral 

(i) m - v)dv 
is evaluated; then the integral 

£ F(x)dx 

is computed. In view of the fact that x is held constant during the 
integration (1), it is clear that the computation of an iterated integral 
is somewhat analogous to the process of partial differentiation. 

Example A. a = —1/2, 6 = 1, <p{x) = — x, \Kx) = 1 + * 

/(*. v) = **.+ V 

f_u2 dx J [+* (x* + y)dy = f_1/2[**V + £]'_*' dx 

= f [2xz + x2 + x + il dx = tf- 
J -1/2 

2.3 Volume of a solid 

The usefulness of the double integral derives mainly from the fact 
that many physical quantities can be expressed in terms of it. For 
example, the volume of certain solids can be so expressed. At every 
point of the boundary C of a simply connected region i£ of the zy-plane, 
erect a perpendicular to the plane, thus generating a cylinder. Let us 
find the volume bounded by this cylinder, the surface z — f(xt y), and 
tiie plane z — 0, Assume f(xt y) tC and f{%} y) > 0 in R. We make 
two postulates about the volume of a solid: 

A. Volume is additive. That isf if a solid A of volume V is composed 
of two other distinct solids A\ and A* of volumes V\ and 
respectively, then V — Vx + W 

B, If a solid A i of volume V\ is a part of solid A 2 of volume Va, then 

Vi 5 Fs. 

Make a subdivision of 11 by curves \Ck]n and erect cylinders on each 
curve Cfe. Denote the volume between the cylinder on C*r the surface 
z = /(*, v) and the plane z = 0, by AF*. If f(xl, yk) and f{xkr yk) arc 
the minimum and maximum values, respectively, of fix, y) in the sub- 
region bounded by Ckf then from the volume of a cylinder and by Postu¬ 
late B we have 

/W, £ An ^ f(xi\ y'k')ASk. 
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Here AS* is the area of the subregion bounded by C*. By Postulate A, 
we see that the required volume V lies between two sums, 

2 ftelt 1/DAS* zvs 2 M'> y'M. 
k=l Jt=I 

If now the norm of the subdivision approaches zero, we see by Theorem 1 
that 

v = / /SM y)dS. 

Example B. The volume of a sphere of radius a is 

v = 2 f jR Va* - xs - y* dS, 

where _ 
R — R{—a, a, — y/as — x2, Vo" — a:3]. 

EXERCISES (2) 
1. Under the assumptions of §2.1, prove Properties I, II, III. 

2. Work out tiie same problem for IV. Explain what to do about a 
subdivision of R which produces subregions lying partly in Ri and partly 
in Rt. 

3. Prove V, VI, and VII. 

fr/4 as 

4. I dx I y*dy — ? 

6. / dx f (x2 + 3y2)dy = ? 
J-2 J2—* 

In the following three problems, express the volume of the solid as a 
double integral, defining R as a region It*: 

7. A tetrahedron with vertices at the points (a, 0, 0), (0, 6, 0)> 
(0, 0, c), (0, 0, 0), where a, bt and c are positive numbers. 

8. A general ellipsoid* 

9* A solid bounded by the planes z — x + a> z = ~ z — a, and by 
the cylinder x2 + y2 — a2* 

10. Prove that the mass of a lamina of variable density p = f(x, y) is 

m- / /*/(», y)dS. 

Define average density and density at a point. State carefully what 
postulates about mass you arc accepting. 

11. Express as a double integral the mass of a right triangle whose 
density varies as the square of the distance from an acute-angled vertex. 
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12. Solve the same problem for an ellipse, the density being propor¬ 
tional to the square of the distance to the nearest focus. 

13. Prove the law of the mean for double integrals: 

j y)dS ~ /(£. ’iM. (£. *)* R- 

§3. Evaluation of Double Integrals 

The definition of a double integral as a limit of a sum gives no due 
as to a method of evaluating it. An iterated integral, on the other hand, 
can be evaluated by successive integrations. We shall show in this 
section that a double integral may be expressed in certain cases as an 
iterated integral. 

3.1 The fundamental theorem 

Theorem 2. 1. /(as, y)zC in Rx 
2. Rt ~ R[a, 6, <p{x), vH^OI 

/ fRJ(x> yw = I!dx Xw)/(x> y)dy- 

Recall that by the definition of Rx the functions <p{x) and are 
continuous in a £ x ^ b and <p(x) < \(>(x) in a < x < b. Choose a 
constant A so that A < <p{x) for a £ x S b. If R*x = Jf[o, b, A, <p(x)] 
and R” — I?{a, b, A, ^(x)] then R’ + R = It”. Suppose that the theorem 
has been proved for the special case in wliich <p(x) is replaced by a constant 
A. Extend the definition of f(x, y) to the region R" so that f(x, y) z 

C In R". 
Then by Property IV of 2.1, 

/ jRJ(x> v)dS = f fRJ(x, y)dS + f jR /(as, y)dS. 

Applying the theorem to the integrals over RfJ and Rf, both of admissible 

type, we have 

J fRfa, y)dS = Ji dx f(x, y)dy - j* dx /(as, y)dy 

= I*dx Rwf[x> y)dy- 

Thus, the theorem in its general form would follow from its special form. 
By an easy change of coordinates, we may also assume that A — 0. 

Suppose that the minimum of \p(x) in a £ x g b is m > 0, Set 
Ax = (b — a)/n and 

P(s) = jfX) fix, y)dy. 

Then F(x) t C in a ^ x ^ b (compare §7, Chapter X). Hence, 
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(1) 

where 

n 

fh F(x)dx = lim Ax Y Ffl*), 

Xk-i = o -f- (Zs — 1 )Ax S I* £ a + kAx — xk k — 1, 2, 

Actually, vve choose $* so that 

/s‘ ^(a:)d2i = ip{£k)Ax. 
jXk-t 

Let m* by the minimum of >p(x) in a:*_i g x g a;*. Choose «0 so 
large that when n > nu wo will have n~l < m. Divide the region 
R[Zk-i, Xk, 0, ^{x)} into n + 1 subregions by drawing the horizontal 
lines 

y = kAyk, k = 1,2, , n, where Aya = [m* — n-1]n-1. 

All but one of these will be rectangles of area x^Ayk> The area of the 
exceptional one is 

/" 
Jxk-t 

[$(x) - mk + n-^dx = Aa#(£t) - mk + n~1]. 

Now by the law of the mean for integrals, we have 

-1 £L«‘ »>*+C-'a,J^ »>* 
<■1 

(2) — &Vk ^ /(£*j *?*») + t^(&) “ IJfcn-j-l)* 
i-1 

If we multiply equations (2) by Ar and sum for ft = 1, 2, • • * , n, 
we shall have on the left the sum which appears on the right of equation 
(I)* On the right of equation (2)r we shall have a sum of n- + n terms 
corresponding to the n2 + n subregions of our subdivision A of H. The 
term corresponding to a given subregion is a product of two factors, one of 
which is the area of the subregion* the other of which is f(x} y) formed 
at a point of the subregion. As n becomes infinite* ]|A|| approaches 
zero. Hence* by Theorem 1 and equation (1), we have 

f* F(x)dx — { jj{x, y)dS, 

and our theorem is proved. 

3.2 Illustrations 

We illustrate by two examples. 

Example A, R* = jR[—1, — x9 1 + x)]t f(xt y) — x2 + y> The 
region Rz is a triangle with vertices at the points 
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(-*,*), (1,2), (1, -1). Then 
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/ jn ^X‘ + = I-irdX /-* = 

The iterated integral was evaluated in §2.2. 

Example B. Find the volume of a sphere of radius a, We have 
from Example B of §2.3 

Ta ,/* Va®- 
V — 2 / dx _V«- — a8 - 

J —a J - 
y3 dy 

EXERCISES (3) 

1. Find the volume of Exercise 7, §2. 

2. Find the volume of Exercise 8. §2. 

(a3 — x*)dx = lira*. 

3. Find the volume of Exercise 9, §2. 

4. Find the mass of the lamina of Exercise 11, §2. 

5. Find the mass of the lamina of Exercise 12, §2. 

6. Give the details of the change of coordinates in §3.1 designed to 
show that A may be taken equal to zero. 

7. In §3.1 extend the definition of fix, y) to the region R" by defining 
f{x, y) to be constant on vertical lines outside the region R. Show that 

f(x, y)tC in R". 

8. Show that the diameter of the region R[xk-\, Xt, «U — »"*» ^{*}] 

is not greater than V^x1 + hi, where hk = Mh — mk + n~1 and Mk is 

the maximum of f/{x) in xk^\ g x £ xk. 

9. Give det ails of the proof that the norm of the subdivision described 
in §3.1 tends to zero vrith l/n. What theorem about continuous func¬ 
tions do you use to show that the numbers hk of Exercise 8 approach 

zero with l/n? 

10. State a theorem analogous to Theorem 2 for a region Ra¬ 

il. Prove that., if f(x, y) e C in a suitable region ft, 

f dx f fix, y)dy = [ dy f fix, y)dx. 
id J a J cs ill 

What is R? 

12. Let f{x) e C and 

/<»{*) = fix), = f0 f-'Kfidt. 
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Prove that 

*<*> - 

13* If jR* = E[—\j 2, 0, x2], show that 

/ Jr yS/2<lS = V* 
Iterate in both orders. 

§4- Polar Coordinates 

We shall obtain here a result analogous to Theorem 2 for the case in 
which the rectangular coordinates (x, y) of that theorem are i-eplaced 
by the polar coordinates {8, r). We shall proceed by analogy, omitting 
some of the more obvious details. 

4.1 Region R$ and Rr 

We define special regions Rg and R,t just as in rectangular coordinates, 
For example, the region Re = R[a, 0, a, i>j is the region between the rays 
8 = a, 8 = 0 and between the circles r = a and r = b. I-Iere 0 £ « < 
,3 £ 2tt and 0 £ a < h. By an elementary integral formula, the area 
of this region is 

(1) 4=1 J'* [t>s - a?\d8. 

More generally, the area of the region Rg = /?[«, 0, a, ^{9)} is 

(2) A = 1 f* me) - a-]dd. 

4.2 The fundamental theorem 

Theorem 3. L f(07 r) t C in Re 

% Re = R[a, ft ip{0)% $(&)] 

—> I!»*.**-£"%*.**■ 

As in the proof of Theorem 2, it is sufficient to suppose that <p{6) — 0, 
Set AO = (0 — ct)/nf Ok — « + kAO and 

ne) = r)rdr- 
Then 

71 

(3) f* F(d)d6 = lim A0 J F(Zh). 
n~"* * 

In this case, we choose so that 

(4) 1 fg„[fWd0 " W(h)A0 
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Our subregions are now introduced by drawing the rays 0 = Ok and 

the circles 

r = JtArjt, & = 1, 2, * ■ * , ft, where Ar* = [m* — frl]rrK 

l^he constant mk is the minimum of $(6) in ft-i ^ 0 ^ fa* Using Comi¬ 
ty 3 §4-1 of Chapter V (taking r as the positive function g)} we have 

(5) 
where 

A6F{h) = M l T>dT + r)rdT 
i»l 

= fiih tw)Aki + /(fej m jt-j-i)A* k+u 

An = AO r* rdr i = 1, 2, * ■ 
J(t— Dirt 

. . - /«I0 , 
Ak»+1 = A8 r dr. 

• , « 

By formulas (1) and (2) and by the choice of £*, so as to make equation 
(3) valid, it is clear that Ah is the area of a certain subregion and that 
the point 6 = &, r = rw is a point of that subregion. Since the norm 
of the subdivision tends to zero with 1 /n, wc see from the definition 
of the double integral that the right-hand side of equation (3), with 
the sum expanded by use of equation (5), is equal to the double integral 
of / extended over Re. This completes the proof. 

4.3 Illustrations 
Example A. Find the area of a circle. The region inside a circle 

of radius a and center at the pole is a region Rg = 
/£[0, 2?r, 0, a]. Hence, the area is 

A = f fS'dS = Iordefordr = *a'- 
Example B. The semicircle y - VV — (x — &)*, b > a} m rotated 

about the origin through 90°. Find the area traced 
out. 
The equation of the curve in polar coordinates is 

* Tf ^ i (r’ + & - a2\ e = f(r) = cos-1 ^^-J 

The region whose area is required is not a region Re- 
Tt is, however, the region Rr = R[b — at b + a> /(r), 

/(?■} -f it/2], Hence, the area is 

A — f f dS * fb+a rdr [/{T) d9 = it ah. 
I jRr Jb-a Jf(r) 

Example C* Find the mass of a circular lamina whose density is 
proportional to the square of the distance from a fixed 



164 MULTIPLE INTEGRALS |Ch. VI £4.3 

diameter. Here 

M = k J jR x* dS, 

where R is the region of Example A and k is a constant 
of proportionality. Then 

M = k [~ d9 /"°ra coss 6dr = ^,ra ■ 
Jo Jo 4 

EXERCISES (4) 

1. Find the mass of a circular disc whose density is proportional to 
the distance from the center. 

2. Solve the same problem for a square. 

3. Find the area of a right triangle by the methods of the present 
section. 

4. Solve the same problem for a general triangle. 

6. Find the area of one lobe of the lemniscate 

rs = a* cos 20. 

6. If R. is the set of points (x, y) for which y4 4- ys £ 1, find 

7. Show by elementary calculus that the area of a region Rr = 
R\A, B, C, ^(r)] is 

// “ C]dr. 

8. Show that for a suitable number £ 1 jet ween A and D the area of 
Exercise 7 is equal to [\K£) - C] (B - A)D, where D is the arithmetic 
mean of A and B. 

9. If F(r) e C in A g r g B and rk = A 4- k(B — AJn-1, k — 0, 
show that 

n 

f*F(r)rdr = Hm J F(fc)(i - r|_,)/2, £ £* £ r*. 
Jt 1 

10. If Rr — R[A, B, 0, ^(r)J, prove that 

/ £f(0, r)dS - £rdr f*(r)/(&, r)d6. 

Hint: Set 

m - £M m r)d$ 
and use Exercise 9. The points £* of that exercise should be chosen 
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so that the area of the region 7?[r*_i, r*, C, ^(r)] is [ifr(it) — — r£_J/2. 
'['his is possible by Exercise 8. Now express the integral defining F(£*) 
as the sum of (n + 1) others and apply the law of the mean to each. 

11. Find the area bounded by the curve r = sin 0, using both orders 

for the iterated integrals. 

12. Find the area between the curve 0 = sin r and the line segment 
0 = 0, 0 ^ r S w. 

13. Find the double integral of the function y/l — r- over the region 

Rt = R ^ cos 0, 1 j. Observe that the result must be positive 

since the integrand is positive over the whole region. 

§5. Change in Order of integration 

In this section we shall illustrate by examples the method of changing 
the order of integration in an iterated integral. No new theory is 
involved. The method is an application of Theorems 2 and 3. The 
iterated integral is first expressed as a double integral and the cor¬ 
responding area of integration determined. Then the double integral 
is again expressed as an iterated integral, but this time the integration 
is in the opposite order. Frequently, it will be necessary to break the 
area into several parts since it need not be, in the first instance, a region 
Rx or Rv. / 

5.1 Rectangular coordinates 

We have already seen in an exercise of §3 that 

(1) £ dx £f(x, y)dy = £ dy £ ffa v)dx. 

Both Integrals are equal to the double integral of /($, y) over a triangle- 
liquation (I) is known as DirichleV5 formula. 

Example A, Invert the order of integration in 

dx f* f(x} y)dy 0 < a < b. 

This is a double integral over Rx = R[a, bf 0, %]> This 
is a trapezoid with parallel sides vertical. It is the 
sum of two regions Ru, a rectangle Rv = at a, 6] 
and a triangle Rv — R[at 6, &]. lienee, the given 
integral is equal to 

£dy £^x> y^dx + £dy £ ftx>y)dy- 
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Example B. 

fody y)dx = Sodx SLn*> y^y 

+ /"dx j/(*t V)dy. 

Here the region is the triangle bounded by the lines 
y=l, y = l — x, y = x — 1. As a check take 
fix, y) = 1. Both sides reduce to 1, the area of the 
triangle. 

Example C. Interchange the order of integration in the iterated 
integral 

1 = /-idx !-Vf (*’ y^y- 
Here the lines x - — 1, x = l>y = — x, 7/ = 
1 + x do not bound a single region but two, 
the triangles Ri and R2 of Figure 9. Note 
that the integral I is the difference of the 
double integrals over R2 and Ui 

1 = S Ja, fix> y)dS - / fgjipt y)dS- 

This is because — x < 1 + x in the interval —■£ ^ 
x < 1 and “X > 1 + x in the interval — 1 < x < — 
Hence, 

1 ~ f-idy fSjdx + && 

~ /oV2^/_Tl^r Sljy S~Rdx- 
If /(x,3/) — l, 1 = 2. This is the difference 

between the areas of /f2 and Rlw 

5.2 Polar coordinates 

The same procedure is applicable in polar coordinates. 

Example D. Obtain Dirichlet’s formula by use of polar coordi¬ 
nates. Clearly, equation (1) must be unaltered if * 
is replaced by r, and y by 0 throughout, since x and y 

are dummy variables and do not appear in the final 
result. We have to consider now the region Rr = 
iS[o, b, a, rj between the circle r = b, the line $ = a, 
and the spiral r = Q. We have 

}{r, 6)d0 = toUts. r 
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Introduction of the factor 1/r docs not affect the con¬ 
tinuity of the integrand since the origin is not in the 
region Rr. Since Itr is also the region Re — R[a, b, 
0, 6] we again get equation (1). 

Example E. Invert the order of integration in 

i-jr«jr 

This is the double integ¬ 
ral of ffr over the region 
R& — i?[0, ir/2,0, (cos 0 + 
sin &)~1]* This is the tri¬ 
angle bounded by the lines 
x « 0, y = 0, x + y = 1. 
It is the sum of three 
regions Rr, indicated by R i, 

R2j Rs in Figure 10. Using 
the principal part of sin“* r 
as usual, we have 

+ 
where 

rfr) - 

[' dr f T'2fde, 
Jl/VZ U(r) 

4 + sin *772 
(r) = ^ - sin-' 

1 

r V2 

EXERCISES (5) 
Interchange the order of integration in the folio wing integrals and sketch 

the region of integration for the corresponding double integrals* 

L fS dx /!■/(*». ?)<&■ 
2. J\2 dx JJ fix, y)dy. 

3. f2 dx jj fix, y)dy. 

4‘ !m dx b^Kx> V)dy- 

6- \l^dy C-*Wu>f{Xt V)dx‘ 
cos 9 

rf{r, 0) dr. 

'sin 6 fir, 6) dr. 
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8- fo * dd fi °a 6) dr. 

9< Jcrdr 9)d0- 

^ !U* &>>*»■ 
n- />/r>>^- 
12. If R is the region bounded by the curve xy = 2 and the lines 

y = x + l, y = x — 1 express the double integral of f(x, y) over R as 
an iterated integral in two ways. 

13. Prove that 

2! Jbf(x)dx Jbf(y)dy = [ jbf(_x)dxJ. 

Hint: Apply Dirichlet's formula to the left-hand side and add the two 
\ ter ate d integral s. 

14. Prove that 

71 ■ X * fXit Jix*)&Xn = * 

Illustrate by choosing a = 0,6 = tt/2J{%) = cost, 

§6. Applications 

The double integral, like the simple Memann integral, is a very 
useful tool in the formulation of certain physical concepts. We illustrate 
here by a number of examples. In many of these applications we need 
a result analogous to Theorem 9, Chapter V* We refer to it as DuhamePs 
theorem. 

6.1 DuhameTs theorem 

Theorem 4. 1, /(*, y)t g(x> y) tC (x, y)zR 
2. A subdivision A divides H into subregions iu, 

h ~ 1, 2, * * * j it 
3* (Zk, |ik)t (£*, Tjk) are points of Rk k — 1, 2, ■ « ■ , n 

n 

-> ^1% 2 ^ Tf*)ASk = f jj{x, y)g(x, y)dS. 

The proof is very similar to that of Theorem 9, Chapter V. It 
depends, of course, on the uniform continuity of a continuous function 
in a closed bounded region, 

6.2 Center of gravity of a plane lamina 

Let us illustrate the method by finding the center of gravity of a 
lamina, geometrically represented by a region R. Let the density at a 

■ .. — 
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point (x, y) of R be f(x, y) and let/(.t, y) tC in R. The center of gravity 
of n particles of masses mi, mt, . . . , mn situated at points (xt; yi), 
(zt, Vt), • * ■ t ten, Z/n), respectively, is known to be at the point (3, y): 

n n 

The numbers Mx and My are known as the r-moments and the ^-moments 
of inass about the origin. To understand their physical moaning, think 
of a weightless plane in a vertical position and let pellets of mass ?nk 
be inserted into the plane at the points (xk} ?/*)♦ If the plane has x-axis 
horizontal and t/-axis vertical, Mx measures the tendency of the plane 
to turn about the origin in the clockwise sense. If the x-axis is vertical 
and the y-nxis horizontal, My measures the same tendency. The point 
(x, y) could be defined as a point such that the tendency of the plane, 
in either position, to turn about it will be zero. 

We now formulate the following postulates about x-moments or 
moments. We state them for ^-moments only, 

A* The x-mmnent is additive♦ 
B. If mass is moved to the right (left), the z-moment is increased 

(decreased). 

C. If mass to the right (left) of the origin is increasedf the x-moment is 
increased (decreased)* 

These postulates continue to have meaning if the mass in the plane has a 
continuous distribution instead of consisting of isolated particles. In 
fact, they are sufficient to define the E-moment of the lamina R described 
above. 

Make a subdivision A of R, dividing it into subregions Rky h 1,2, 
* * ■ i n- bet (xfk} yi) and (a#, yfkf) be points of Rk where the density 
/(x, y) has its minimum and maximum values, respectively. If ASk 
is the area of Rk and AM* its mass, we have 

f(4, vi)*S* ± AMji ^ /(*£', yff)ASk. 

By Postulate A the rr-momcat ju* of R is the sum of the x-moments of the 
subregions Rk. Let (£*, 4) be a point of Rk having minimum abscissa 
and (£*, ifh) a point of maximum abscissa. By concentrating all the 
mass of Rk first at one of these points and then at the other, we see by 
Postulate B that 

n n 

2 ej(x'k, y'k) S ft, a Y gfizZ, yt)ASt. 
1 Jfc-l 

By Theorem 4, both these sums approach the same double integral as 
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ll<A|| —* 0, and 

**-/ y)ds. 

Proceeding in a similar way for the y-moment, we get for the coordi¬ 
nates of the center of gravity 

(!) 2 = jj J JB y)dS, y = jj J jRyf(x> y)dS, 

M = J jRf(x, y)dS. 

Example A. Find the center of gravity of a triangle. The most 
general triangle is the region Rt = fg[0, h, \ix, X*x], • 
where Xi < Xa. Then 

tmU jjr “k/r* 
f 

A = j jr dS = (X* - Xa) ^ 

£ = 

That is, the center of gravity lies on a line parallel 
to one base and half as far from that base as from the 
opposite vertex. Applying this same result, we see 
that y = (Xt + Xs)A/3, and the center of gravity is 
at the intersection of the medians of the triangle, * 

6,3 Moments of inertia 

Using the postulates of §5.2,, Chapter V, we obtain the moment of 
inertia of the lamina of §0.2 about an axis perpendicular to it and passing 
through the point (a, 5) as 

(2) I = / JR [(x - a)2 +(y- b)^f(x, y)dS. 

Similarly, if g(x, y) is the square of the distance from the point (x, y) 
to the line L in the plane, then 

(3) 1 = Ji ffO, y\fix, y)ds 

is the moment of inertia of the lamina about L. 

Example B. Find the moment of inertia of a circle about a diameter. 
Use polar coordinates and take the circle r = a, the 
diameter in question being the y-axis. Then if the 
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density is taken as unity, the mass M is ira- and 

' - / fR **ds=i:00325 d° /0 rHe=t=%ir' 

The radius of gyration k of It with respect to L is where M is 
given by equations (l) and 1 by (3). If all the mass of It is concentrated 
in a particle a distance k from Jj, Its moment of inertia is unchanged. 

EXERCISES (6) 

1. Show that the center of gravity of an ellipse lies at its center. 

2. Find the center of gravity of the area bounded by the curve 

xin + yin — 1, 
where n is a positive integer. 

3. The density of a circular lamina at a point (r, 6) is (1 + r*)-1. 
The center is at the pole. Find the moment of inertia about a perpen¬ 

dicular at the center. 

4. Find the moment of inertia of a square about a perpendicular at 
the center if the density is proportional to the distance from the center. 

5. Find the radius of gyration in the previous problem. 

6. Express each coordinate of the center of gravity of the region 

Itx = R[a, b, 0, <p(x)] as a simple integral. 

7. Find the center of gravity of one lobe of the lemniscate 

r2 = a2 cos 29. 

8. Find the moment of inertia of the area of the previous question 
about a perpendicular to the plane at the pole. 

9. What is meant by the z-moment and the y-moment of a lamina 
about a point (a, b)? Obtain integral formulas for these numbers. 
Use these fromulas to show that if (a, b) is determined so as to make both 
moments zero, then (a, b) is the center of gravity. 

10. Obtain an integral formula for the moment of inertia of a solid 
of revolution about the axis of revolution. 

11. Find the moment of inertia of an anchor ring about its axis. 

12. Make a subdivision A of It into n subregions Iik of equal area, 
and let (xk, yk) lie in /?*. Define the arithmetic average of f(x, y) over 
It as the limit of the arithmetic averages of f(xx, yx), f{x2, Vt), ■ ■ ■ , 
/(Zni Vn) as IIA|| —+0. Obtain an integral formula for it. 

13. A man’s height is the average height of a room in the form of a 
hemisphere. At what points of the floor can he stand upright? 
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14. Solve tile same problem for a conical room. 

15. Find the center of gravity of one lobe of the curve r = a cos 30. 

§7. Further Applications 

Tn this section, we apply the method of §G to obtain several additional 
applications. We shall obtain an integral formula for the area of a 
surface and another for the attractive force between a lamina and a 
particle under the Newtonian law of attraction. 

7.1 Definition of area 

We begin by defining the area of a surface whose equation is z = 
f(x, y), the function/(x, y) being of class C' in a region R of the xy-planc. 
Make a subdivision A of R into subregions ft*, k = 1, 2, ■ • * , n. On 
ft* erect a cylinder with its rulings perpendicular to the xj/-plane. At a 
point (x*, yt) of ft* erect a perpendicular to the xy-plane intersecting the 
given surface in a point ft*. At Ph draw a tangent plane to the given 
surface and denote by A<r* the area of this plane cut out by the cylinder 
on ft*. The area of the surface.* = f(x, y) cut out by the cylinder on ft 
is defined as 

n 

lim V Ac*. 

We shall show that this limit exists under the conditions assumed and 
that it has the value 

(1) ^ “ / fB VI TW+H dS. 

7.2 A preliminary result 

Let /I be the area of a square and B the area of a rectangle, the square 
and rectangle lying in two different planes which make an acute angle y 

with each other. Suppose further that 
both quadrilaterals have two sides parallel 
to the line of intersection of the planes 
and that the square is the projection of 
the rectangle on the plane of the square 
(Figure 11), Then B = A see % For, if 
the length of the side of the square is i, the 
dimensions of the rectangle are l by l sec y, 
Mo re generally, the area of any region pro¬ 
jects by use of the same equation. For, 
any area is the limit of a sum of rectangles 
or squares. 

In the definition of the area of the surface z - f (x, y)9 denote the 
area of Rk by ASk. Then by the result of §7.2, Aah = ASk sec yu, where 

7.3 The integral formula 
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is the acute angle between the tangent plane at P& and the a^-plane, 
T ^ 
Then 

A = lira J A5* see 7* = f f sec 7 dS, 
IMHO k^l 1 JR 

provided sec 7 is a continuous function of x, y in ft. The direction 
components of the normal to the surface at a point (x, y, f(x, y)) are 

Ji(x, y),ft(x, V)> -!> so that for the acute angle 7 we have 

cos T = V/I+/1+V 
and formula (1) is proved. 

Example A. Find the area of a sphere of radius a. Take the equa¬ 
tion of the hemisphere as 

* = f(x, y) - Voa — £2 — yi- 

Note that f{x, y) does not belong to C1 in the circle 
x2 + yi ^ ci2. Let us find the area of the surface 
above the circle x2 H- y2 = E>2, b < a, and then let 
b —» a. With obvious notations, 

a>~ } L'li+i+iis 

— 2wa[a — \Zaa — Ir] 

lim Ah = 27ra2, 
— 

The area of the whole sphere is 

7.4 Critique of the definition 

In view of the student’s experience with the definition of arc length 
of a curve as the limit of the lengths of inscribed polygons, the definition 
of area in §7.1 may be unexpected, ft might seem more natural to 
consider the area as a limit of areas of inscribed polyhedra. But the 
latter limit need not exist, even for very simple surfaces. Let us illustrate 
by a right cylinder of altitude 0 erected on the circle x2 + yz = 1. Its 
curved surface has area 2nm. Let us inscribe a polyhedron whose faces 
consist of isosceles triangles as follows. Diride the circumference 
of each base into n equal arcs subtending angles AO = 2n/n at the 
centers, but let the points of subdivision of the top circumference lie 
midway between those of the bottom circumference. Draiv a straight 
line from each point to its two neighbors on the same circle and to the 
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two nearest points of subdivision on the other circle. The inscribed 
polyhedron thus formed has 2n isosceles triangles for faces. The base 
of each triangle is 2 sin (A9/2) and its altitude, computed by the Pythag¬ 
orean theorem, is 

c = yja? + - cos !?)* j 

Hence, the area of the inscribed polyhedron is 2nc sin (AS/2). 
Next suppose that the number of sides of the polyhedron is increased 

by first dividing the cylinder into m equal cylinders by planes parallel 
to the base and then proceeding with each as above. In c we must replace 
a by a/m, and we must note that the total number of faces is now 2inn. 
The total area of the inscribed polyhedron is 

A(m, n) = 2a sin (ir/n) Vo8 + ma[ 1 - cos (x/n)is. 
Note that 

lim A(m, n) = «>, lim A(n, n) = 2wa 
m Ji~t so 

lim A(n\ n) — 2t \/a2 + (7^/4). 
«—t * 

Hence, A(m3 n) approaches no limit as the number of faces becomes 
infinite, * 

7,5 Attraction 

Two particles of masses m% and m2 a distance r apart attract each 
other, according to the Newtonian law, with a force equal to 

F = K™ip, 
where K is a constant depending upon the units employed. From this 
law we could set up postulates like those of §G.2 which would continue to 
have meaning for a continuous distribution of mass. Without giving 
details, let us find the attraction of a lamina R on a unit particle in that 
plane but outside R, Let (r, 0) be the polar coordinates of a point of 
R and let the density of the lamina at that point be/(r, 0). Assume the 
particle to be at the pole and compute the component of the attraction 
Fx in the prime direction. Then with the usual notations we have 

T1 

F. = lim T Kf{r\9k) cos 6kASk 
l* MO -W r| 

(2) =kJ /*’■«—g 

* This example is due Lo H. A, Schwarz. Gfisammette McUhematische Ahhartdlungen, 
Vol* 2, p. 309, Berlin: Julius Springer, 1890. 
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Example B. Find the attraction on a particle at the pole by a 
lamina K» = /f[-ir/2, v/2, a, b] of unit density. The 
region It lies between two concentric semicircles. 
By symmetry the total attraction will be equal to the 
x-coraponent 

r*W f» dr b 
F, = K I cos Sdd I — = 2K log — 

J —t/2 J a T a 

If the symmetry of the present example is lacking, 
it is necessary to obtain the components of the attrac¬ 
tion in two perpendicular directions. The total 
attraction can then be obtained by use of the parallelo¬ 
gram of forces. 

EXERCISES (7) 

1. Find the area of the surface cut out of a sphere of radius a by 
a cylinder of diameter a if one of the rulings of the cylinder is a diameter 

of the sphere. 

2. Find the total area cut out of the surface 

2 = tan~l 2 
X 

by the cylinder x2 + y2 = a2. Describe the surface. Note that it is 
discontinuous where it is cut by the yz-plane. 

3. Find the areas of a cone and a cylinder by the present methods. 

4. Find the area cut out of a sphere of radius a by a square hole 
of side 2b {b < a/\/2)f the axis of the whole being a diameter of the 

sphere. 

5. Find the area of a torus by the present methods. 

6. Find the area of the surface z = xy over the circle x2 + V% = a2* 

7. A region R is bounded by the rays 0 = x/2, 0 = 2?r and by the 
branches of the spirals r - 6, r = 20 nearest the pole, Find the total 
force of attraction of R on a particle at the pole. Describe its direction. 

8. Find the attraction of a semicircular lamina on a particle at the 
point of the circumference (extended) farthest from the lamina. 

9. Give the postulates mentioned in §7.5. Use them to derive 

formula (2), 

10. Show that one component of the attraction of the surface of §7.1 

(of unity density) on a particle is 

k j vi +n+Hds 

Describe p and 
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11. Find the attraction of a hemispherical shell on a particle at the 
point of the sphere (produced) which is farthest from the shell, 

12. Give the details in the computation of the function A(m} ?i) of 
§7,4, 

13. Show that the faces of the polyliedra of §7.-1 approach a position 
parallel to the base of the cylinder as m—► qq (n fixed). What relation 
has this fact with the equation 

Urn A(mi n) = oo ? 
m—* « 

14. Give an example to show that A (m. n) may become infinite when 
both m and n become infinite. 

Ch. VI J8.2I 

Theorem 6. 1. f{x, y,z) tC in V„ 
2. V„ = V[R, <p{x, y), *(x, I/)] 

—> / / «■ •>'«' - / fn dS £> «• '>*■ 
By use of Property IV we see as in §3.1 that it. is sufficient to suppose 

^ identically zero. By following the proof of that section, it will be easy 
to fill in the details of the following sketch. 

Set 

(2) F(x, V) = /(** V, *)<&, 

§8. Triple Integrals 
In thi3 section we discuss integrals of functions of three variables over 

regions of throe dimensional space. The development is very similar 
to the corresponding one for double integrals, so that fewer details will 
be given. 

8.1 Definition of the integral 

Let f(x, y, z) be defined in a closed bounded three dimensional region 
7 having volume. We define subdivision A and norm A in the obvious 
way. Suppose 7 is divided by A into subregions 7i, 7S, . . . , 7„ 
and that (**, yt} zk) is a point of 7*, k = 1, 2, - • • , n. Then the triple 
integral of f(x, */, z) over V is defined as 

(!) jim 2 ^xk’ yt’ Z^Yk = / / frf(x> y’ ^dV I 

when this limit exists. The symbol AVk denotes the volume of Vk, A 
result analogous to Theorem 1 holds here: The integral (1) exists if 
/ e C in V. Properties I to VII of §2.1 apply here also, mutatia mutandis. 

and make a subdivision of R into n subregions Rk all of equal area AS, 
so that if the norm of this subdivision approaches zero as n —> °c, we have 

(3) f f F(x, y)dS = lim AS Y F(xk, Vk) (a%, Vk) f Rk- 
J JR n—k 

We choose (xk, yk) so that 

/ k ^x’ y^dS = ^Xk> y^AS‘ 
.Set 

m = Min $(x, y), mk = Min 4>{x, y), fc = 1, 2, 
(x,y)tR ' (x.y)zRk 

* »■ 

We take n so large that n~l < m {m > 0). 
Now divide the cylinder under ^ on /4 into (ra + 0 subregions by n 

equally spaced planes From 2 = 0 to z — m}: — n~\ denoting the distance 
between successive planes by Az. The volume of n of these subregions 
will be AzASt and the volume of the top one will be 

I jR \\p(x, y) - mk 4- n-l]dS = AS[Hn, Vk) — m + rr1]. 

8.2 Iterated integral 

The actual evaluation of a triple integral depends upon its expression 
as an iterated integral. This is possible for special types of regions which 
we shall denote, for example, by = V[R, *p{x} y),$%y)\> This is the 
region bounded by the surfaces 2 = <p(x, y), z = $(x} y) and the cylinder 
whose rulings arc perpendicular to the ary-plane on the boundary of a 
region R of that plane. We suppose that *p3 ^ e C in R and that <p(x, y) < 

y) in R except perhaps on the boundary. As an illustration we may 

take V[R, — *s/q? — x2 —* y‘2f <\/a2 — x2 — y2]t where the region R is 

R* = R[—a, a} — y/a2 — x2, Va2 — Id2]. Then V is the region bounded 
by the spherical surface x2 + y~ + z2 — a2. 

The chief result here is contained in the following theorem. 

Write the integral (2) formed for (xkt yk) as the sum of n + l integrals 
corresponding to the (n + 1) intervals into which the interval (0 S 
z ^ 'I'i&kt Vk)) is divided by the n horizontal planes described above. 
Apply tie law of the mean to each. For example, 

AS f(Xk, yk, z)dz - f(xk, yh ?*) AS [$(xk, yk) - mk + ti"1]. 

The right-hand side is a product of /, formed at a point of the subregion 
at the top of the cylinder on Rkt by the volume of that subregion. Sub¬ 
stituting the values thus obtained for F{xk, yk) in the sum (3) we get a 
new sum of n(n + 1) terms, each of which is in the form appearing in the 
sum (1), Hence, the limit is the triple integral of/ over V, and the result 
is established The result can also be applied to regions Vv: and F«. 



178 MULTIPLE INTEGRALS ICh. Vi §8.3 

Example A. Find the volume of the tetrahedron bounded by the 

planes x = 0, y ~ Q, z = 0, a~lx + b~ly + c~lz = i. 
Here 

Vz» = V[R*, 0, c(l — cr1# “ 
i!g = R[0j a, Q} h(l — a-1#)]. 

The volume required is 

/ / Jr** ~ ! L* r ‘ 
— a 

/(i 

dx J (1 - or hr - fr1^) % 

a6c 

6 ' 

8.3 Applications 

We list here several integral formulas. A detailed discussion of them 
is omitted in view of their similarity to corresponding formulas in two 

dimensions. 

I. Mass. M = J f Jrf(x, y, z)dV. 

II. Center of gravity. 
£ = V / / Jv X^X' V> **dV‘ 

III. Moment of inertia. T=f f jt r'Hx, y, z)dV. 

FV. Force of attraction. 
F--Kf / Jrme- *> ^ 

In all of these integrals, / is the variable density of a solid V. In 
[I only the x-coordinate of the center of gravity is given. Analogous 
formulas hold for y and z> The integral in Til gives the moment of 
inertia of the solid V about an axis, and r is the distance from the point 
(x, yt z) to the axis, Tn TV (rT 9, ip) are the spherical coordinates of a 
point P of V: 

x — r sin ip cos 0f y — r sin <p sin &} z = r cos <pj 

and Fz is the ^-component of the force exerted on a unit particle at the 
origin by the solid V (supposed not to include the? origin). 

EXERCISES (8) 

1. Find the moment of inertia of the solid of Example A about the 
a>axis. Express the triple integral involved as a triply iterated integral 
in the six possible ways. Evaluate two of them. 

2* Find the center of gravity of the solid of Example A. 
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3, The density of a cube is proportional to the square of the distance 
from one vertex. Find the mass. 

4* A column has for lower base the square with sides ±x ± y = a. 
The axis of the column is the s-axis. The upper base is the plane z — k — x. 
How far is the center of gravity from the axis? 

5. Change the order of integration in 

f° dx J* dy f* f(x, y, z)dz. 

(Five answers,) 

6. Express the volume of the solid between the hemisphere 

z = \/a2 — x~ — £/2 

and the plane z = a/2 as a triple integral in six ways. Do not integrate. 

7. Solve the same problem for the cone with vertex at the origin 
and with base bounded by the circle 

3 — h, x2 + y- = a3* 

8. Describe the region V if 

/ / /„/<*, y, 4dV - /; dy fy'-‘d, y. ,)*. 

9. Find the volume of the region 

*• + ** + y2 + z2£ e 

10* Find the ^-coordinate of the center of gravity of the solid 

x* + y~ ^ 2ax9 0 g az ^ x1 + y* (a > 0), 

§9, Other Coordinates 

Many physical situations are more simply described in some system 
of coordinates not rectangular. The force of attraction given by formula 
IV of the previous section is a case in point. Again the position of a 
point near the surface of the earth might be fixed by its latitude, longitude, 
and distance above or below the surface of the earth. In this section 
we shall obtain results analogous to Theorem 5 for cylindrical and 
spherical coordinates* 

9.1 Cylindrical coordinates 

Lot the cylindrical coordinates of a point be (0, r, z)t related to the 
Cartesian coordinates of the point by the equations 

x — r cos 0, y — t sin 0f z * z. 

In this system of coordinates a region F#r — V[Rt p($, r), ^(0, r)J is the 
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region bounded by the surfaces z = <p(0, r), z = ^(0, r) and the cylinder 
whose rulings are perpendicular to the plane z - 0 on the boundary 
of a region if. We suppose that <p, ^ e C in if and that <p < \p in if except 
perhaps on the boundary. 

Theorem 6. 1. f(0, r, z) tC in V,r 
2. V* = V[R, <p(6, r), f(e, r)\ 

—+ II fveW’ T> *>dV “ / In dS jKw r’ *)dz- 

The proof of this theorem is the same as that of Theorem 5* In 
applying it, however, one would evaluate the double’integral over R by 
use of polar coordinates rather than rectangular. 

Example A, Find the volume of the cone 0 ^ z ^ h(a — r)/a. 
Here 7* - V[R} 0, h(a - r)/a\ R = Re = R[03 2tt, 
0; a]. Hence, the volume is 

/1 l dv=rd6 ardr p~r)/a dz=Ua2k- 
9,2 Spherical coordinates 

Let us introduce spherical coordinates by means of the equations 
x = r sin <p cos 0, y = r sin <p sin 6, z = r cos 0. It. will now be clear, for 
example, what is meant by a region V$v = V\R, g{0, <p), h{$, <p)]. We 
could describe it as the set of points (r, 0. <p) for which 

(1) 9(0, h($, v), 

where if is the set (0, tp), for example, for which 

(2) G(9) £ v> £ H(0) 

Theorem 7. I. f(r, 6, <?) e C in Vov 

2. = V[R, g(0, *), k(9, *)] 
3. if = Re = R[a, 0, G(0), ii(0)J 

(0, <p) « R, 

« ^ 0 ^ 0. 

/ / "■ *)dV 

- fM lorn si" * ** X‘« fir’ ’• 

Make a subdivision A of V by the coordinate surfaces, obtained by 
holding each coordinate constant while the other 
two vary. Let us compute the volume of a typical 
subregion bounded, for example, by the spheres 
r — fo, r = n + Ar, by the planes B = $Q, B « 0O + 
AB} and by the cones <p = <p » + A^. This 
region is obtained bv rotating the area A of Figure 12 

t hrough an angle AB about the £-axis* By the theorem of Pappus, the 
required volume AT is Ah As, where k is the distance of the center of grav- 

Ftg, 12, 
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ity of A from the axis. Hence, 

AV — r'r” sin <p'ArA6A<p? 

where rf and ril lie between and + Ar and tpr is between <pQ and tp0 + 

£tpt Hence, 

/ / fvf(>% 0, <p)dV = Jim 2f(n, oh *»)A% 

n 

HI = lim V f{n, fa, <Pk)T*k*k sin ^jArjtA8*Apjt. 
w HIHO 

Next interpret rf 0, ip as rectangular coordinates. The region defined 
by inequalities (1) and (2) will now have a different shape. Call it 
y*r By Duhamel’s theorem the limit (3) will be the same if the accents 

are removed. It is equal then to 

///, /(x, y, s)a:£sin z dV, 

and this may be written as an iterated integral by Theorem 5: 

11 frt /(*> V> 2)a;:!sin z dV 

- I’ *y /™ »in * d‘ 12? A*v' 

This is equivalent to the desired result when the 
dummy variables are renamed. 

Example B. Find the volume of a cylinder 
by use of spherical coordi¬ 
nates. Generate the cylin¬ 
der by rotating a rectangle 

r=h sec $ 

r=a esc 0 

Fig, 13. 

about the 2-axis. Take the rectangle as the region R 
in Vry = F[fl, 0t 2ttJ. Since the boundary of the rec¬ 
tangle cannot be given by a single equation, we must 
break the integral over T% into two parts; 

X 
tnti"1 Co/A) 

2?r 
3 Jo 

f h sec p /*2ir 
in tp ihp / r2dr I d& 

Jo Jo 
/w/2 t o ca& # fit 

sin <p dtp I rMr f 
a/h) Jo Jo 

dd 

tau-1 (a/h) 

sin ip see8 ip d<p 

+ 2w l r 
o J un“i Wh) 

CSC2 ip dip 

^ h(a* + ft2) — ^ ft8 + | ttark = xci2ft. 
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EXERCISES (9) 

1. Compute the moment of inertia of a sphere about a diameter. 

2. Solve the same problem for a cone about the axis. 

3. Find the attraction of a cone of revolution on a particle at the 
vertex, using cylindrical coordinates. 

4. Solve the same problem, using spherical coordinates. 

5. Find the attraction of a pipe (a solid between two coaxial cylin¬ 
ders) on a particle on its axis. Discuss the limiting case in which the 
length of the pipe becomes infinite in one direction. 

6. Find the volume of a cube using cylindrical coordinates. 

7. Solve the same problem for spherical coordinates. 

8. Find the attraction on a particle at the origin hy a cube bounded 
by the planes x = ±h, y = ±h, z = h, z = 3h. 

9. Using rectangular coordinates, express the triple integral of / 
over the region 

** + V* + ^ 2ay £ 2a- (a > 0) 
as an iterated integral. 

10. Solve the same problem, using spherical coordinates, 

11. Solve the same problem, using cylindrical coordinates. 

12. Describe the region defined by inequalities (J) and (2) iig(0, <p) = 
a cos <?, h(9, <p) = b cos tp, G'(0) = 0, 7/(0) = jr, a - 0, p = 2w. 

13. Solve the same problem if r, 0. <p are thought of as rectangular 
coordinates. 

14. Fill in the limits of integration in the equation 

fo d$ A"<h °’ v)dr = / r*dr J do f f(r> 6, <p)dv. 

16. Express the following iterated integral in cylindrical coordinates 

16. Solve the same problem in spherical coordinates, 

§10. Existence of Double Integrals 

In this section we give a proof of the existence of the double integral 
of a continuous function. The proof is very similar to that given in §7 of 
Chapter V, so that we shall omit some of the details. It is easy to see 
how the proof could be modified to apply to triple integrals. 

r 
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10.1 Uniform continuity 

The existence of the double integral depends vitally on the uniform 
continuity of the function to be integrated. 

« 
Definition 5. The function f(xt y) is uniformly continuous in a 

region R <—> to an arbitrary t > 0 corresponds a number 8 such that for 
all points (x% yr) and (x'\ yrr) of R for which ]x' — x/f\ < £> \y' — y"\ < 5 

toe have 
W> yf) -/(*", an I <« 

As in §0.4 of Chapter V, we could prove the following important result* 

Theorem 8. 1* f(xf y) e C in R 

-y f(x} y) is uniformly continuous in R. 

Recall that we defined R in §1 to be a closed bounded region* This 
is an essential part of the hypothesis of the theorem* By use of this 
result, we could now prove Theorem 4* By a corresponding result in 
three dimensions, we could also prove the form of Duhamel’s theorem 
needed in §9*2* 

10,2 Preliminary results 

For an arbitrary subdivision A of R into subregions Rk of area ASk} 

k = 1, 2, * * * , n, introduce the following notations: 

Mk = 

Sa = 

Clearly, sa ^ jSa- We say that A' is a refinement of A if it is obtained 
from the latter by subdivision of the subregions of A* 

Max /(j, y), nit — Min f(x, 
{xry)zRit (r.i/nlit 
o n 

y = / mtASt. 
— i t-j 

Lemma 1*1, S& e J., z j under refinement of A* 

The proof follows as in §7,1. 

Lemma 1* 2. 1. Ai and A2 are subdivisions of R 

‘ -► S Sia £ 

The proof follows as in §7.1, Chapter V. It is at this stage that we 
need the assumption about the subdividing curves Ck made in §1,2. 
We now define s and S as the least upper bound of sa and the greatest 
lower bound of Sa for all subdivisions A* 

Lemma 1*3, 1. f(x3 y) zC in R 

—4 5 - S. 
Let e and 5 be the number described in Definition 5. Then, if || A|j < 6, 

we have by Theorem 8 
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0 £ Sa “■ ^ (Af* — 7rik)ASk £ *A. 

Here -4 is the area of /?. As in §7.1, Chapter Vf 

0 ^ S - s S *A} 
and the lemma is proved. 

Lemma 1.4. 1* f(xt y)tC in R 

-* lira = lim S& = s = S, 
Has ;-k» 0a [Ho 

For, as in §7.1., Chapter V, we have for rA|| < 6 ■ 

OSSi-SS eA 
# 0 £ 5 - Sa ^ «*4. 

10.3 Proof of Theorem 1 

Set a* equal to the sum appearing in equation (1) §L2. Then for 
any A 

^ I ffi $ 

By Lemma 1.4, it is clear that 

lim =* s = St 
[]Al]—tO 

and the proof is complete. 

10.4 Area 

Throughout this chapter we have assumed that the area of a region 
!i is a known concept. We conclude t he chapter with a brief indication 
of the way in which it might he defined. Assume the area of a square 
known. Cover R with a mesh of squares. Denote the sum of the area 
of all squares consisting entirely of interior points of R by Ai and this 
sum plus the areas of all squares containing boundary points of R by .4 r. 
Clearly, the area At which we seek to define, should lie between Ai and 
A€, If for all possible meshes of squares the least upper bound of Ai 
is equal to the greatest lower bound of Ac, the common value is defined 
as A. W© could now show that, if a subdivision of It is made into sub¬ 
regions, each of which has area, the sum of the areas of the subregion is 
equal to A. This is the chief property of area which we have used in 
setting up the definition of a double integral. 

It is interesting to observe that there are regions bounded by Jordan 
curves (§1, Chapter VII) which do not have area.* That is, Ai ^ At 
for the region. Of course, such regions are excluded from the discussions 

* W, F, Osgood, "A Jordan curve of positive area.” Transactions of the American 
Mathematical Society VoL 4 (1903), pp. 107-112, 
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of the present chapter. There is another definition of area due to H. 
Lebesguo under which every region bounded by a Jordan curve bas area. 
In fact, everj’ bounded closed point set has area (measure) under this 
more general definition. If this definition of area is adopted, the defini¬ 
tion of double integral in §1 is still valid and Theorem 1 still holds. The 
resulting integral is then known sis the Lebesgue rather than t he ftiemann 
integral. However, for this new type of integral in its complete gener¬ 
ality, the method of subdivision which we have employed is discarded 
in order to take care of integrands, which are very discontinuous. 

EXERCISES (10) 
1. Give an example of a function defined on a closed square that has 

no maximum value there. 

2. Give an example of a continuous function f(z, y) defined on a 

square and not bounded there. 

3. State without proof the Ileine-Borcl theorem for two dimensions. 
Use it to prove that a function /(*, y) continuous in a region R (closed 

and bounded) is bounded there. 

4. Give an example of a function /(at, y) that is not uniformly con¬ 

tinuous. 

6. Prove Theorem 8. 

6. Prove Theorem 4 by use of Theorem 8. 

7. Define uniform continuity for a function of three variables. By 
use of a result corresponding to Theorem 8, prove the form of Duhamel’s 
theorem required in §9.2. 



CHAPTER VII 

Line and Surface Integrals 

§1. Introduction 

In this chapter we generalize further the notion of integral. For the 
ordinary Ricmann integral, the region of integration is an interval 
a & x S b. ' If the function to be integrated is defined along an arc 
of a curve in two or three dimensions, we can still define an integral 
over that region; the result is called a line integral or curvilinear integral 
over the arc. Tn like manner, the plane region of integration of a double 
integral can be replaced by a region on a curved surface, and the result 
is called a surface integral. In fact, these notions could be generalized 
to spaces of any number of dimensions. 

1.1 Curves 

We shall be dealing with curves of various types. For easy inference 
let us introduce names for them. A curve in the a-y-plane is a set of 
points {x, y) for which 

O x = M) V = <p{t) a g t £ b, 

where <p(t) z C, M)t C in a £ / £ b. If v(a) = v(b), $(a) = ^(b), the 
curve is closed. It is called a Jordan curve if it is closed and has no double 
points, that is, for each l in the interval a <C t h there is just one 
point {x, y). It can be shown that such a curve divides the plane into 
two parts, an exterior and an interior. See, for example, the Cours 
d’Analyse of de la Vallee Poussin, page 378 of the 1914 edition. This 
may seem obvious to the student, but,-he should recall that the curve 
is given by the pair of equations (1) and not by any drawing made on 
paper. There exist continuous curves (not Jordan curves) which pass 
through every point of a square. Sec, for example, The Taylor Senes 
by P. Dienes, page 175. Of course, such a curve does not enclose an 
interior! 

Definition 1. The curve (/) is regidar if it has no double points and 
if the interval (a, b) can be divided into a finite number of subintervals in 
each of which <p(i) z Cl, <P(l) t Cl. 

It is dear from elementary calculus that such a curve is "sectionaliy 
smooth1’ in the sense that it is composed of a finite number of arcs, each 
of which has a continuously turning tangent. Of course, the curve may 
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have “corners” where the ares are joined together. For example, the 
boundary of a rectangle is a regular curve. A Jordan curve can fail 
to be regular as, for example, when it contains a piece of the curve 
y = x sin (1/a:) near the origin. It is evident that a regular curve has 

arc length. 

Definition 2. A region is regular if it is closed and if its boundary 
consists of a finite number of regular Jordan curves which have no points 
in common with each other. We shall denote such a region by the letter S. 

An example of a region 5 is the set of points (x, y) for which Ui! + 
yt ^ 2. If from this region the points on the x-axis in the interval 

I < x < 2 were removed, the region would no longer be closed and 

lienee not regular. 

1.2 Definition of line integrals 

Let a function fix, y) be defined at every point of the curve (I), 
which we shall denote by P. Make a subdivision A of the interval (a, b) 
by the points ta, h, ... , We define two types of line integrals 

indicated by the following notation: 

# 

(2) fpf(x,y)dx = J2’y{x,y)dx 

n 

= lim y /Mb), sKb'DMb) — ‘Mi-Ol 
34r.-*o 

(3) frf(x, y)dy = V)dV 

It 

= iim y /mo, mmt<) - iHk-t)] 
M-o A, 

Here x0 = <p(a), y0 = Ha), a:, = <p(b), ?/l = *(&)• Both notations are 
incomplete. The first gives no indication of the direction of integration; 
the second does not show the dependence of the integral on the curve P. 
Usually no ambiguity results. Of course, for the line integrals to be 

defined the defining limits must exist. 
Theorem 1. 1. T is a regular curve 

2. fix, y)cC on T 

—i Jrf(z, y)dx and fxJ(.x> yWy«*«*• 

It is no restriction to suppose that <M), HO e C1 in a g t £ b. Then 

by the law of the mean 
n 

[ fix, y)dx - lim Y /Mb), MdMO1'){U — b-i), 
7r «-o ff. 
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where U-1 < f( < U- By Duhamel's theorem the limit, exists. In a 
similar way we sec- that the limit (3) exists. It is clear by this result 
that both line integrals are equal to Riemaun integrals, 

fvf(X, y)dx - fabMt), mwiodt 

Jrf(x, vWv = jfVteCO, f(t)W(t)dL 

Hypothesis 1 may be altered in a variety of ways. For example, if 
the curve F is monotonie in the sense that <p(t) and $(t) are both monotonic 
in (a, b): then the limits (2) and (3) both exist as Stieltjes integrals by 
Theorem 1 of Chapter V, 

l fix, y)dx = j'fivit), m)Mt) 

jr fix, y)dy \K0)#(0- 

Furthermore, if <p(t) = t and ${t) belongs to C instead of to C\ we see 
that 

(4) . frf(x, y)dx = f(x,iKx))dx. 

Thus, it will be possible to extend the integral (2) over the boundary 
on a region R% [see §hl, Chapter VI], or the integral (3) over the boundary 
of a region Ry if /(x, y) 0 C there. 

Example A, Compute (x + y)dx if F is x = cos Qf y = sin $, 

0 ^ B g t/2. Here the integration is intended to be 
from (1, 0) to (0, 1) along an arc of the unit circle. 

Jr (x -f- y)dx - — (cob 0 + sin 0) sin $ d$ 

1 _ 7T 
_ ^ X 

We might also have used equation (4), 

Jr (x + y)dx = (x + Vl — ^)dx = — ^ 

Example B- Compute jv (x + y)dx if T is y — 0, 0 g x g 1; x = 0, 

0 £ y ^ L The integration is again intended to be 
from (1, 0) to (0, 1) over the broken line. 

jT (s + y)dx = xdx ** — 

These two examples show that a line integral may well 
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depend upon the path and not merely on the end point* 

of the path. 

Example C, Extend the integral 

Jr {x + y)dx + {x — y)dy 

over the two paths F of Examples A and E. The 
sum of an integral (2) and an integral (3) is usually 
written in this way with a single integral sign. Simple 
computations give for the circular arc 

j*/2 (cos 20 — sin 2$}d$ = — 1, 

and for the broken line 

j" xdx - jQl ydy = -1. 

We shall see later that in this case the integral is 

independent of the path. 

1.3 Work 
One very natural application of the notion of a line integial is to 

the problem of defining the work done by a field of force on a particle 
moving along a curve through the field. Let the field be given by two 
functions X(x, y) and Y(x, y) which are to be the x- and ^-components, 
respectively, of a force at the point (a, y). The magnitude of the force 
at the point is -\/X2 + F* and its direction is determined by tlie angle 
tan~l (Y/X). Starting with the familiar definition of work as FI if 
the particle moves in a straight line through a distance l undei a constant 
force of magnitude F in the direction of motion, we can easily see how to 

make the definition in the general case. 
Let the particle describe the curve (1) from t — a to t = b. Make 

the subdivision A of §1.2 and let the arc length of the curve between 
the points t = fj_i and t = U of the curve be As*. Let 0,- be the angle 
between the direction of the force of the field at the point f,- and the 
direction of the tangent to the curve at U directed in the line of motion. 
It is natural to define the work done on the particle as it traverses the 

whole path as 
jt 

lim V \/-^l + %1 cos &i&Si 
x } M-*o Aj 

Xi = X(v(U), HU)), Yi = Y(HU), HU)). 

The direction components of the tangent are <p'(U), H(U) and of the 

direction of the force, Xi, Yi, so that 
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cos 8( = Xiifi'(tj) + YoP' (ft) 

Vx} + y? Vwiu)]* + w{u)Y 
Lsi = j(^VVW J* + dt = A/( vV(£01“ + W'(&)]*, 

where (t_i < & < (j. By use of Duhamel's theorem we easily see that 
the limit (5) is the line integral 

Je X(x> y)dx + y(z, y)dy. 

For example, if X = * + y, Y = x - y, the work done by the field on a 
particle moving from (1, 0) to (0, 1) along any regular curve is — ] 
Such a field is called conservative. The negative sign means that the 
particle has done work on the field. In other words, if the particle moved 
as a result of the forces of the field only, it would move in the opposite 
direction over most of the path. 

EXERCISES (1) 

1. If r is the curve of Example A or that of Example B, compute 

L by dx + (x + y)dy. 

2* Solve the same problem for 

y dx + x dy. L 
3. Compute the integral of Exercise 1 where F is the boundary of 

the triangle with vertices (0, 0), (1, 0), {0. 2), integration in the clockwise 
direction. 

4. Compute 

L (*2 + y)dx + (2z + y-)dy 

over the boundary of the square with vertices (1, 1), (2, 1), (2, 2), (I, 2) 
in the clockwise sense. 

5. Compute 

r (x + 2y)dx -f yx dy, 

where the path is first the curve y = —x* arid then the curve x3 = y1. 

6. Compute 

x dy - y dx 
—~—;———> L Jr z* + y* 

where T is the entire curve ar = 1 + 2 cos 6, y = 2 sin 9, integration 
cou ntercl oc k wise. 
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7. Show that the integral of Example C, if T is the curve (1), has 

the value 

, £[*s4{i>) - <r(a) - f’(b) + <p-(a)} + <p(b)i(b) - <p(a)<js{a). 

Check the results of Example C by this formula. 

8. A field of force is set up by a particle situated at the origin 
(inverse square law'). Find the work done on a particle moving over 
the path of Example A. Explain your answer. 

9. Solve the same problem if the particle moves along a straight 
line from the point (1, 2) to the point (2, 4). 

10. Solve the same problem from the point (1,0) to the point (0, 1). 

11. Solve the same problem for the curve (1) assumed not to pass 

through the origin. 

12. Show that the Stieltjes integrals of §1.2 are both equal to Riemann 

integrals. 
Hint; Make a change of variable a: = ip{t) in the sum (2) and x = i£(0 

in (3). What are you assuming about the inverse of a continuous, 

strictly monotonic function? 

13. In the derivation of the limit (5), it was tacitly assumed that 
<p'(J) and tp'(t) do not vanish simultaneously. How would you alter 
the discussion to take care of the regular curve z = y = fs? 

14. If /(as, y) * C, g(x, y) r C‘ on the curve (1) and if = v>{U), 
yt = evaluate the limit 

n 

lim ) f(xi, yi)[g{xh y<) - g(xi-u 
W-o Aj 

§2. Green's Theorem 

Wc shall prove here a result connecting a double integral over a 
region with a line integral over its boundary. It is sometimes referred 
to as “Gauss's theorem/' But it was brought to the attention of 
mathematicians by the work of G. Green anti is more frequently known 

by his name. 

2.1 A first form 

Tf a region is bounded by one or more curves the positive direction 
over the boundary is the one that leaves the region to the left. Thus, 
for the region between two concentric circles the positive direction is 
counterclockwise for the outer boundary ? clockwise for the inner one. 

Theorem 2. 1, R is a region Rs and also Rv 
2. F is the boundary of R 
3. P(x, y)t Q(x, y) * Cl in R 
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(!) —*■ frpd* + Qdy - / fB Wi(», V) - p*(®, y)]ds, 
the line integral being taken in the positive sense. 

Let R„ => R[a: b, <p(x), Then by Theorem 2, Chapter VI, 

/ In p*&> y^s = /!dx Xt'f p&> y^y 

= /><*, t(x))dx - f* P(xMx))dx. 

By equation (4) of §1.2 we see that the right-hand side of tills equation 
is equal to 

- fT P(x, y)dx, 

the direction of integration being counterclockwise. This proves the 
theorem in so far as it concerns P(x, y). The remainder is proved by 
using an iterated integral in the other order3 and for this we need to 
know that 12 — Ry, 

2.2 A second form 

Theorem 3. 1. R is a region Rx and a regular region S 
2. T is the boundary of li 
3. P{x, y), Q{xt y) e Cl in R 

-* fr Pdx + Qdy = j jR [Qi(®, y) - P*(x, y)]dS, 

the line integral being taken in the positive sense. 

The region is now not known to be a region Ry, but it is known that F 
is a regular curve. The previous proof applies in so far as it concerns 
P{Xj y), The boundary V consists generally of four regular arcs. Hence, 

(2) Jr Q(x, y)dy = j* Q(x7 <p(x))v'(x)dx — f* Q{xr $(x))$*(x)dx 

+xrQ(b> y)dy ~ x<rQ(a’y)dy> 

(3) 
Set 

/ X CiC*, y)dS = fabdx X*“ QiC*. tidy. 

= f™ Q(x, y)dy. 

Then by Example B, §7*3, Chapter X, we have 

(4) F'{x) = f*™ Ql(x, y)dy + Q(x, WxWM - Q(x, <p(z)W(x). 
The first term on the right of equation (4) is the inner integral on the 
right of (3). Hence, 

/ X y^dS “ F^ “ P^ “ Jl GC®* ${%))$'{z)dx 

+ / Q{x, <p{x))<p'{xi)dx. 
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We now complete the proof by comparing this equation with equation (2). 
Of course, R* could be replaced by Rv in hypothesis 1. 

2.3 Remarks 
If a regular region S is such that it can be divided into a finite number 

of regions Rx (or Ry) by cross cuts, equation (1) still holds where T 
is the total boundary, consisting of one or more regular closed curves. 
For example, the region between the circles x~ + yi = 1 and s2 + y- = 4 
can be divided into four regions i?, by the lines x = ± 1. If Theorem 2 
is applied to each of these four regions, the line integral will be extended 
over the straight line segments twice, in opposite directions, and will 
cancel each other. The remaining line integrals add up to the left-hand 
side of equation (1). The sum of the four double integrals is equal to 

the right-hand side. 
It can be shown that every regular region can be divided into a 

finite number of regular subregions Rm or Ry {W. F. Osgood, Lchrbuch der 
Funktionentheorie, 1923, p. 181). Hence, equation (1) is valid for every 
regular region. It should be noted that it is not always possible to 
subdivide a regular region into a finite number of regular subregions 
which are both Rx and Rv. Consider, for example, the region Rx = R 
[0, 1, xa sin (1/m), 1], It is for this reason that Theorem 3 is sometimes 

useful when Theorem 2 is not. 

2.4 Area 

A useful application of Green's theorem is to the problem of finding 
the area of a region defined by the equations of its boundary curves. 
If /? is a region to which Green’s theorem applies and which is bounded 
by r, then the area of R is given by any of the three formulas 

A = - X ydx, A = X * dy, A = * X (~y)dx + x dy, 

the integration being in the positive sense. For, if formula (!) is applied 
to any one of these line integrals, we discover that it is equal to the double 

integral of unity over It. 

Example A. Find the area of the ellipse x = a cos 9, y = b sin 9. 

Here 

A = — X ydx = ab X sin2 Odd = irab. 

EXERCISES (2) 

1. Do Exercise 4 of § 1 by use of Theorem 2. 

2. Integrate by two methods 
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in the positive sense over the boundary of the region bounded by the 
curves y- = x and \y\ = 2x — 1. 

3. Compute by two methods 

//. 2xydS 

over the ellipse of Example A. 

4. Prove Green’s theorem in Polar coordinates, 

L p(r' 9)dr + Q(r, B)dB //. r-^Qiir, 0) - P2{r, 0)]dS. 

State carefully your hypotheses. 

6. Find three line integrals for the area of a region bounded by a 
curve whose equations are given in polar coordinates: 

*-kL jr'u'-l JJ*- rddr. 

State carefully your assumption about I\ Why does only one of these 
formulas give the correct value for the area of the circle r g o? 

6. Find the area of the circle r = a cos 8. 

7. Find the area of an ellipse by use of polar coordinates. Take a 
focus at the pole. 

8. Find the area enclosed by the loop of the strop hold 

x - a( 1 — £“)/(! + t2), y — xt. 

9. Solve the same problem for the folium z* + y* = 3axy. 

10- Find the area, of a triangle by use of line integrals. 

11. Prove Theorem 3 if Hx is replaced by Ry in hypothesis L 

12. The boundary of a region R consists of the origin and the two 
arcs 

y — x* cos {2k fx) 0 < x & J 
x - y* cos (2tr/y) 0.< y £ 1. 

Show how it can be divided into a finite number of subregions which 
are regions Rx or Rv. 

13. State and prove sufficient conditions for the equation 

14. Tf j5 is a regular region bounded by a single regular curve x — tp(s), 
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y — $(s), 0 j « g / and if Ai? = tui + vs*, show that 

(«Az> + uivi + u*v$)dS = 

Bi) 
where ~ is a directional derivative in ( lie direction of the exterior normal 

on 
(assuming that the curve is traced once in the positive sense as s varies 

from 0 to l). 

16. Prove 

/ /,<“4” - "4“),is - /, (“s-'s)*■ 
16. If Aw — 0 in Sj show that 

/: du 
dn 

ds = 0, 

17. If Aw = 0 in S, show that 

f u~ ds > 0. 
J o dn 

§3, Application 

The line integral is a useful tool in the investigation of exact differ¬ 
entials. We wish to know when P(x> y)dx + Q{xF y)dy is the differential 
of a function F(xt y). Under what conditions will F exist such that 
F\ = P, F2 = Q, and how can one find F if it exists? 

* 
3.1 Existence of exact differentials 

A region R is simply connected if its boundary consists of a single 
closed curve. Let us use the sign * as a superscript to the name of a 
region to indicate that it is simply connected. 

Theorem 4. 1. P(x, y), Q(xt y) zCl in 
2. Qi{x> y) = Fap, y) in S* 

—4 There exists F(xt y) e C2 in S* such that 
Ft - P, Pa - Q. 

It should be noted that in the presence of hypothesis 1 the condition 2 
is necessary for the existence of Ff for then Fit — Fti* Wo define 
F(xf y) explicitly. Let (a? b) and (xu yi) be points of Then 

(1) F{xo, y0) - f™P(x, y)dx + Q(x, y)dy, 

where the path of integration is a broken line. Such a line exists by 
the definition of a region. We note first I hat F is a single-valued fune- 
Mon, that the integral defining it does not depend upon the path. For. 
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consider two broken lines in S* joining (a, £i) with (zq, y0). They will 
form the boundaries of a finite number of polygonal regions in which 
Qi = By Green’s theorem the line integral (1) extended around the 
boundary of each polygon will be zero. From this fact it is evident that 
the integral (1) is independent of the path. 

Let us compute Fi and Ft at (zu, ifu), an interior point of S*. This 
point is the center of a circle K which lies entirely in S*. Choose a point, 
(zo 4* Az, y9) inside K. Then 

AF _ F(x0 + Az, t/o) ~ F(zo, t/o) 
Ax " Az 

= J- f AXj, Pdx + Qdy. 

If the path of integration is taken to bo a straight line, it is evident that 
the integral of Q is zero. Then by the law of the mean 

AF 
Ax 

= Ptfeo + BAx} 2/o) 0 < 6 < 1, 

and Fi(xq, y<>) - P{xo, ^d). Similarly, F% = Q. 

3*2 Exact differential equations 

It is now a simple matter to integrate the exact differential equation 

P(x, y)dx + Q(x, y)dy = 0, 

where Qi = P» in Clearly, the primitive is F(x, y) — c, where c is 
an arbitrary constant. In the evaluation of the integral (1) it may be 
convenient to use regular paths which are not polygonal lines. We 
must show that the value of the integral is not altered by the change in 
path* 

Theorem 5. I. P(x, y)f Q(x, y) t Cl in S* 

2* Q i Or, y) - P«(x, y) in S* 
3. F is a regular curve in S* joining (a, b) with (xo, //u) 

-> The integral (1) extended over V is independent of F* 

For, let F have equations 

3 = V - *K0 Oi^!. 
Then by Theorem 4 

faTPdx + Qdy = fo *(ovw + F&it), mmw- 
j 

The integrand Is -q F(<p(t), so that 

(2) Pdx 4- Qdy - F(z0, y0) ~ F(a, 6). 
Jfl.o 

Since the final result does not depend on <?{t) or <PU), the proof is complete. 
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Observe that this result is analogous to the fundamental theorem of 
the integral calculus which enables one to evaluate a definite integral 
by use of an indefinite one. If one can obtain F[x, y) by inspection, 
equation (2) gives a simple way to evaluate the integral (1). 

Example A. Do Example C of §1.2. It is easy to see by regrouping 
terms that 

(z 4- y)dx + (x - y)dy = d{x-/2) - d(y-/2) + d{xy), 

so that the required integral is 

xs y , 
2 “ \ + xy 

(0,1) 

3.3 A further result 

(1.0) 
-1. 

Theorem G. I!P(x. v). 0(x. v) tOina domain D*, thenQi = Pain D* 

4—t Jr Pdx + Qdy = 0 for every regvlar dosed curve T in D*. 

The implication “->” is an immediate result of Theorem 5. For, 
if (o, l>) is any point of the curve r, then the value of the integral is 

F(a, b) - F(a, b). 
To prove the opposite implication, suppose that Qi — Pa > 0 at a 

point (z0, yo) of D. By continuity this point is the center of a circle 
K of D* with circumference C, throughout which Qi — Pa > 0. By 

Green’s theorem 

/ Ik {Ql ~ Pi)dS = fc Pdx + Qdy > °* 

This contradicts the hypothesis, Similarly, if Qi — Pa < 0 at (z0, yo), 
we obtain a contradiction. Hence, Qi(z0| yo) = Pa(zo, Vo), and the proof 
is complete. Observe that the theorem remains true if the curve r is 

allowed to cut itself. 

3.4 Multiply connected regions 

In the previous theorems the simply connected character of the 
region was an essential part of the hypothesis. For, consider the integral 

(3) L xdy — ydx 
x% + y* 

where f is the entire unit circle. Here Pr Q z Cl mdPi = Qi in the region 
1/2 S x1 + y* £ 4, for example. The unit circle lies in the region. 
But the value of the integral is easily seen to be different from zero. 
Of course, the region considered is multiply connected* The results 
of the present section are easily applied to multiply connected regions 
by the introduction of cross cuts. For example, the integral (3) is zero 
if F is any regular closed curve in the region which does not cross the 

x-axis in the interval 1 f2 5 x £ 2, 
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L 
EXERCISES (3) 

L 
0,0 

ex cos y dx — a* sin y dy - ? 

0.0 
2y cos x dy — y2 sin x dx = ? 

=•/, 
(?/2 — x*)dx — 2xy dy 

r (x2 + y1) 
— ? Integration is in the positive 

sense, and r is the unit circle. 

*■» - y3 
X*y 

dx -f- 
xy ~ dy = ? What restrictions do you 

impose on the limits of integration and the path of integration? 

6, If r is a regular closed curve lying entirely in the first quadrant 
(x > 0, y > 0), calculate 

/ 2{x2 - if — I )dy — 4xydx 

Jr (%* + vl - l)2 + 

g f e*(X sin y - y cos y)dx + i>x{x cos y + y sin y)dy = ? 

* /r *2+^2 
’he 

curve is the same as in Exercise 3. 
Hint: Integrate over the circle x* + y- = r2 and let r—»G. You 

need not justify the process of taking the limit under the integral sign. 

7. Evaluate the integral (3)* 

8. If Ps QzCx and Qx = P? in the closed region between the con¬ 
centric circles I\ and r2f show that 

jTi Pdx + Qdy = Pdx + Qdy, 

the integration being clockwise in both cases, 

9, If u(xj y) t C2 and Au = 0 in S*t find a function v(x, y) such that 
mi — V2, U2 — —t?i in S*. This function is said to be conjugate to u, 

10. Find by line integration a conjugate to the following functions: 

(a) x3 — 3xy2, (b) cv cos x, 

In case (c) specify the region £*, 

(c) 
V 

xt + y* 

11* Give an example to show that the conjugate of a function need 
not be single-valued in a multiply connected region. 

12. The equations defining conjugate functions in polar coordinates 
are 
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Find a sufficient condition on u{rf 0) in order that it should have a 
conjugate v(r7 &) and find v(r, 0) by fine integration. 

13. Illustrate Exercise 12 by u — log r. 

14. If v(x, y) is conjugate to m(x, y), show that the integrals 

U(x, y) = f*b u dx — v dy, V(z, y) = J™ udy + vdx 

are independent, of the path and that V{x, y) is conjugate to V{x, y). 

§4. Surface Integrals 

Just as the Ricmann integral generalizes to the line integral, so too 
the double integral over a plane area generalizes to a- surface integral 
over an area of an arbitrary curved surface. We define the surface 
integral hero and show how to compute it.. We then generalize Green’s 
theorem. This result will enable us to express a triple integral over a 
.solid In terms of a surface integral over the surface bounding the solid. 

4.1 Definition of surface integrals 

Let a function P(s, y, z) be defined in a closed bounded three dimen¬ 
sional region V. Let 2 be a surface z = f(x, y) which lies inside V when 
(x, y) lies in the region 5 of the x, y-plane. Hake a subdivision A of 5 
into subregions Rk, k = l, 2, • • ■ , n, and let (£*, rjt) be a point of Rk. 
Then the surface integral of P(x, y, z) over S is 

n 

f [ P(x, y, z)dZ = Urn J P(&, /($*, yk))ASk, 
J Js HaS-KJ M. WHOA 

where AZ* is the area of that part of 2 which corresponds to Rk♦ 

Theorem 7. L P(x, y, z) z C in V 
2. X is ike surface z — f {x, y) over the region R 
3. f(xt y) z Cl in R 
4. 2 lies in V 

*■//. P{x, y, z)d2 exists 

B. j \^P{x, y, z)d2 

= / JR P(x, y, fix, y))Vl +fl(x, y) + f\{x, y)dS. 

This theorem enables us to reduce a surface integral to an ordinary 
double integral. By the law of the mean, we have (§7, Chapter VI) 

AS = J 1 +yi(x, y) '+ ft(x, y)dS 

— Vl M +/i(ajfe, bk)&Skt 

where (akt bk) is a point of Rk and &Sk is the area of that subregion. 
rtii{r, 9) = v2(r, 9), u2(r, 0) = - rv^r, $). 
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Substituting this value of A2S in equation (1) and using Duhamel’a 
theorem, we obtain the desired result. 

There are obvious modifications of the theorem. The surface 2 
might have the equation x = f(y, z) or y = f(x, z). In fact, the existence 
of the surface integral (1) is assured if 2 can be decomposed into a 
finite number of parts, each of which is cut only once by a parallel to 
some axis and has a continuously turning tangent plane. The radical 
in equation B is equal to sec y, where y is the acute angle between the 
normal to 2 and the z-axis. 

Example A. Compute //. xhj-z dZ, where 2 is the unit sphere. 

The two nappes of the sphere are % - + y/l — x* — y*. 
For each nappe 

J ft,V.iZ- f 
where R is the unit circle. For the upper half of the 
sphere 

cos* & sin* 0 d& 
1r 
24 

For* the lower half, z will be negative, and the value 
will be — a- 24* The value of the given surface integral 
is zero* 

Example B. Compute !L cos y dE, where Z is the unit sphere 

and y is the angle between the exterior normal to the 
sphere and the positive z-axis. For each nappe of the 
sphere, equation B gives 

J J cos y d% — J J cos y [sec y\ dS — ±*\ 

For the upper half we obtain the value +x and for the 
lower half, — x* Again the required integral is zero. 
In both of these examples hypothesis 3 fails on the 
boundary of R* This causes no difficulty* We 
have only to replace the unit circle R by another of 
radius 1 — t and then let c —* 0. 

4*2 Green’s theorem 

We now prove a result analogous to Theorem 2. For the sake of 
simplicity of statement, let us introduce a further notation. A surface 
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% wiH be denoted by 2* if it has the following properties* It is the 
boundary of a three-dimensional region V, which is a region Fw, Fv„ F„ 
(§8*2, Chapter VI)* In each case the defining functions are to belong 

to C1* For example, if 

(2) F* = V(R> <p(*> v)> $(x> ^))> 

then ip* ^ e C* in R. Clearly Z* will have a continuously turning tangent- 

plane* 
Theorem 8* I* P{xt y, z), Q{xt yy z)} R(xs y, z) z C1 in V 

2* V is bounded by Z* 
3* a, fir y are the direction angles of the exterior normal 

to 2* 

—> / / Jr y>3) + &(*» y>2) + v> z^dV 
-//, [P(x, y, z) cos « + Q{x, y, z) cos f) + R(x, y, z) cos y\d2. 

IE V is defined by equation (2), we have by Theorem 5, Chapter VI, 

/ / !r**y- ! {*‘lSCn*h 
- j fR It(x, y, Hx, y))dS - J jR R(x, y, <?{x, y))dS 

= j JX{ R(x, y, z)|cos y\dZ - j R(x, y, z)|cos rldS. 

Here -1 and 2* are the upper and lower nappes, respectively, of X*. 
Since eos y > 0 on 2] and cos y < 0 on 2a, we have 

Mr Rzix, y, z)dV = //, R(Xj y} z) cos 7 dZ* 

The theorem is proved in so far as it concerns the function R(x, yr z). 
The remainder of the proof is supplied by symmetry. 

The theorem clearly remains true if the region F can be divided up 
into a finite number of subregions, each of which is bounded by a surface 

Example C. Check Examples A and B by Theorem 8* In Example A, 
R(xt yt z) = z = cos 7* Since /?3(z, y} z) = 0, 
it is clear that the triple integral of /?a(x, yt z) over 
the interior of the unit sphere is zero* For Example B, 
we have R(xf y} z) = 1, Rz{%> yt z) = 0* 

Example B* Evaluate by two methods 

Mr {xy + yz + zx)dVt 

where V is the region bounded by the planes x 0, 
y = 0, z = Gf z — 1 and the cylinder x- + y* *= l * 
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13) 
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By iteration 

'-//*(*+!+d* 
n; = tf(o, i, Vi - **, oi. 

/** r * /•*72 
= / r*f/r / cosflsin 0rf0-f * / r2rfr / sinSde 

Jo Jo Jo Jo 
ft fw/2 

+ $ J r*dr I cos 5 rfff 

= «■ 

By Theorem 8 

/ = J Jv cos a + ~ cos 0 + ~ cos 7^d2. 

Here 2 consists of 4 plane faces and a cylindrical 
surface. The only plane face that contributes a value 
not zero is z = 1. For it, a = tt/2, 0 = r/2, y = 0. 
Hence, we obtain 

IIt"-IL ds 

1 fl fw/2 i 
u / r-dr I cos 0d6 — 
2 Jo Jo () 

Finally, for the cylindrical surface, cos « = x, cos 0 = 
y, cos y = 0. Here wc have only to consider the 
first two terms of the integral (3) in this case. The first 
can be expressed as a double integral over a unit square 
in the xz-plane, the second over a unit square in the 
ys-planc: 

/ / & cos «dS =1 /# dzfg (I - y*)ydy = I 

J f & cos 0dZ=y\dzfg 

1 « i + 4 + 4 - tt- 

EXERCISES (4) 

1. Check Green's theorem by computing both sides of the equation 
independently ii P = e1, Q — R = 0 and V is the tetrahedron bounded 
by the planes * = 0, y = 0, z = 0,x + y + z=l. 

2. Solve the same problem tf P = x*, Q = R = 0 and V is the unit 
sphere. Compute the triple integral by use of spherical coordinates. 
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3. Compute 

//. (*V + y-*s + z2xa)d2, 

where 2 is that portion of the cone xi + y- — z* = 0 (2 nappes) cut 
out by the cylinder x1 + y2 — 2x = 0. Ans. V V2t. 

4. Show that the moment of inertia of a lamina in the form of a 
curved surface 2 about an axis is 

where r is the distance of a point of 2 from the axis and p is the density. 

5. Find the moment of inertia of a spherical shell about a diameter. 

6. Show that the volume of V in Theorem 8 is given by any of the 
integrals 

j' J i cos a d2, J J ycos0dX, J j zcosydl 

IL (x cos a + y cos‘0 + z cos y)d2. 

7, Compute the volume of the tetrahedron of Exercise 1 by use of 
Exercise 6. 

8, Solve the same problem for the volume of a cone. 

9, If Av — Pn + + Has* show that 

m. (u&v + u\v% + u$v$ + um)dV = //, .uZd* 

Bv 
where — is a directional derivative in the direction of the exterior normal. 

an 

10. Prove 

/ / /„ <■“*• - - / L (“ s -' a)1iz- 
11. If Au = 0 in V, show that 

//,£«-11 

124 If An — 0 in Vt show that 

/ /..“Siz60- 
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13. Prove that the surface integral of Theorem S will be zero for 
every surface E* if, and only if, Pi + <2 2 + P2 = 0, Make a precise 
statement of the result. 

§5. Change of Variable in Multiple Integrals 

For simple integrals we have, by the change of variable x = #(0, 

(1) f™ F(x)dx - £ FMDWm. 

The interval (a, 6) on the l-axis is transformed into the interval (<p(a)t 
<p(b)) on the x-axis. We develop here a corresponding formula for a 
change of variable in multiple integrals. 

5.1 Transformations 

Let the equations 

(2) 
f x = g(ut v) 
\ y = h(u, v) 

define a one-to-one transformation of the region Ruv of the w-plano 
into the region R^ of the a^-plane. This means that to each point 

of either region corresponds just one point of the other by equations (2). 
Analytically, g and h are defined (single-valued) in RVVj and the equations 
(2) can be solved for u and u, the resulting functions being single-valued 
in Rjy. For cxamplc} take g{u, v) = v cos uf A(u, v) — v sin u. The two 
regions might be as indicated in Figure 14. Let the boundary of 
be the curve Txu: 

(3) * = v(t)> V = #(0 0 £ t £ 1. 

Then the boundary curve Tuv of Ruv will be given by the equations 
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W 
*co 
HO 

ff(«» *0 
h(ut v), 

These could be solved to obtain u and v as single-valued functions of /. 
Thus in the above example, the curve Is - 2x + y2 « 0 has the para¬ 
metric equation x = l + cos l, y = sin L Equations (4) become 

1 + COS l = V cos It 

sin t = v sin % 

or 
v = 2 cos (t/2) 
u — ij 2. 

This is a piece of the curve v — 2 cos u. 
hot us investigate how a line integral is affected by the preceding 

transformation (2). 

We show that 

(5) [ Q(x, y)dy = f Q(g{u, v), h(u, i>))^i(u, v)du + h(u, v)dv\. 

rl’he direction of integration in one of these integrals is arbitrary; in 
the other it is determined by the transformation (2). In our example, 
the clockwise description of l’*( corresponds to the counterclockrrise 
description of T„r. The integral on the left of equation (5) is equal to 

(6) L q(ho. mwrnt 

To evaluate the right-hand side we use the equations (4) of the curve 

r„„. They give 

H(0 = a) J + ki(u, v) 

so that the line integral oyer Tw is also equal to the ordinary integral (6). 

5.2 Double integrals 

Theorem 9. 1. F(x, y) t C in Rm 
2, g{uy y), h(u, v) tCl in RUv 

h) 
3. ^ 0 i n R'U 

d(u, v) 
4. Rxv and R„ correspond in a one-to-one fashion under 

transformation {2) 

(7) j fR F(x, y)dS 

IL F(g{u, u), h{u, v)) 
d{g, h) 

dS* 
d{Uj y) 

Note the resemblance of equation (7) to equation (1). J he region 
of integration is altered by the transformation in both cases. The 
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iactor in the simple integral corresponds to the Jacobian in the 
double integral. 

To prove Theorem 9 set P{x, y) = Q,(a?‘ y) and apply Green’s theorem ■ 

/'/. ^ ^ Jt9V 

the integration being counterclockwise. Equation (5) gives an expres¬ 
sion for this line integral in the zuJ-pl&ne* Apply Green’s theorem in the 
latter plane: 

/ Lf<* y)ds- - ± / LQMu- '>• *<“■ '» 5ST) 
The doubtful sign results from tire ambiguity in the sense of description 
of r„0j plus and minus corresponding, respectively, to counterclockwise 
and clockwise. By hypotheses 2 and 3 the Jacobian never changes sign. 
To determine which sign is correct, take F = 1. The left-hand side 
represents an area and is positive. Hence, the sign must be chosen as 
in equation (7). I he proof is completed when Q\ is again replaced by F. 

Example A. Make the transformation * = « cos it, y = v sin u to 

I LydS«» 
where is the region shown in Figure 14. The 
Jacobian of the transformation is — y, so that ihe 
integral becomes 

/ In.. c' sitl u dS“*' * 

Hence, 

IIdx /oV2i“*’ yAy = r u du Cu p*<lv*• 

5.3 An application 

Ft is frequently required to evaluate a surface integral over, a surface 
L which is given parametrically: 

Set 
x = g(u, v), y = k(u, v). 

. _ djh, ft) _ d(k, g) 

3 d(u, v)’35 - dfc~v)’33- 

= Vj! +H +n. 

z = k(u, a). 

<%, h) 
d(u, v)’ 

Let 2 correspond to the region of the wr-planc. Suppose that D ^ 0 
m ft*,. Then ji, j2, js do not vanish simultaneously. Suppose first 
that j3 does not vanish. If 7 is the acute angle between the normal 
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to 2 and the z-axis, then sec 7 = -D/ljal- L Rw is projection of 1 

on the zy-plauo, by Theorem 7 

J J P(x, y, z)d E = j P(x, y, f(x, y)) ^ dS^. 

By Theorem 9 this is equal to 

P(g{u, v), h(u, u), k(u, v))D dSv It. 
jf it is j 1 or which does not vanish, we may project 2 on the yz- or 
tfz-plaiie and obtain precisely the same formula. Finally, if no one 
of the Jacobians is different from zero throughout Ruvt we may divide 
this region into subregions in each of which some Jacobian does not 

vanish. Hence, we obtain in all cases 

(8) P{x, yf z)dZ = P(ff(u} v), h(u, v), k(u, v))D dSu*- 

frhe great advantage of this formula over that in Theorem 7 is that it 
no longer requires that the surface £ be cut only once by a parallel to 

the axis. 

Example B* Find the area of the sphere 

x — a sin <p cos 0, y — a sin & sin 0, z — a cos 

Simple computation gives 

5*4 Remarks 

D = a2 sin 

Hence, the area is 

A — J a% sin & = or Jj* dd j* sin <pd*p 

= 4r<22* 

The transformation (2) lias another useful interpretation. It may 
he regarded as a change of coordinates* Thus (*t, y) and {% y), connected 
by equations (2), may be thought of as different coordinates of thfe same 
point. In our example, set v — r and u — 0* It then becomes the 
transformation of polar coordinates. There is then just one region 
of the plane under consideration. But its boundary has a different 
equation according as rectangular or polar coordinates are used. The 
Jacobian of the transformation is —r, and we obtain Theorem 3, Chapter 
VI, as a corollary of Theorem 9. 

By use of Theorem 8, we could now extend Theorem 9 to three dimen¬ 
sions* The new factor introduced into the integral by the transformation 
would again be the absolute value of the Jacobian of the transformation. 
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It is interesting to check that this factor is r- sin for spherical coordi 
nates and r for cylindrical coordinates. This must follow from th* 
results of Chapter VL 

ir 
5.5 An auxiliary result 

Ch. Vll 55.51 

5. Solve the same problem for Bu„• 

6. Find the area of the ellipse 

*! 4. t. = 
aa b- 

1 

In the application of Theorem 9, it is sometimes difficult to verifv 
hypothesis 4. In view of Theorem 16, Chapter I, it might be supposed 
that the non vanishing of the Jacobian would be sufficient to guarantee 
the one-to-one nature of the transformation. But that result dealt with 
local properties, with smalt neighborhoods. Notice, for example, that 
the equations 

bv relating it to the area of a circle by the transformation x = au. 

y ~ 
7. Show analytically that areas arc preserved under the rigid motion 

X = a + u cos a — » sin a, y - b + u sin a +« cos a. 

8. Express the integral 

O) X ~ It- — if3, y = 2UV 

make the region 1 £ u- -f- y! 5 4 correspond to the region 1 ^ a:2 4- 
ir 16, that the Jacobi:in is not zero, and that the transformation is 
not one-to-one. The points u = 1, v = 1 and u = —l,v~ - I both 
correspond to the point x = 0, y — 2. 

We state here without proof* a useful result that guarantees hypoth¬ 
esis 4. Let us suppose that the first three hypotheses of Theorem 9 
hold. Suppose further that is bounded by a simple closed curve 

and that, the transform of this curve under equations (2) is a simple 
closed curve rJB traced once as r„„ is traced once. Let be the region 
inside rra. Then the correspondence between R^ and Rw is one-to-one. 
To apply this result, we have only to investigate the transform of a 
single closed curve. 

As an example, consider the part of the region 1 g u2 + that 
lies in the first quadrant. By the transformation (9), its boundary 
becomes the boundary of the region 1 g a:3 4- y- g 16, i/|0. One 
secs this by transforming separately the two straight line segments and 
the two circular arcs of the boundary. By the result quoted, the two 
regions correspond in a one-to-one way. 

EXERCISES (5) 

1. Compute the area of Rxii of Lig. 14 first by use of the coordinates 
xy and then by use of the coordinates uo. 

2. Solve the same problem for the area of Kuv. 

3. From the region between the circles xz + y2 = 1, x2 + y- = 4 arc 
removed the points for which y2 < 2x - x2 to form the region R„. 
Describe the region !?„*, corresponding to under the transformation 
x *= v cos u,y — v sin u. 

_ 4. Find the area of /?ra in Exercise 3 by two methods. 

•Son, for example, the Court d’Analyse, of de la Vallee Poussin, 1923, Vo). I, 
p. 355. 

f L dx y)dy 
JO Jy/l^i 

as an iterated integral using mi-coordinates if x = v- — ti2, y = 2uv. 

9. Evaluate the two integrals of Example A. 

10. By use of equation (8) show that the area of the surface of 

revolution 

x = u cos v, y = u sin is, z = f(u) a ^ u ^ b, 0 g w £ 2x 

is _ 

2tt u Vl + l/'MJ1 du¬ 

ll. Use the result of Exercise 10 to find the area of cylinder, cone, 

and sphere. 

12. Find the area of a torus. 

13. Prove the theorem of Pappus for the area of a surface of revolution 

bv use of Exercise 10: 
A = 2trhl 

Here l is the length of the rotating curve and h is the distance of the 
center of gravity of the curve from the axis of rotation. 

14. Compute the Jacobians for spherical and cylindrical coordinates 

mentioned in §5.4. 

16. Show how a triple integral transforms under the transformation 

x = g{u, v, w), y - h(u, v,v>), z = k(u, v, w), 

where 
+ biht + fei&s = 0 
+ hjit + kiks = 0 

030 l + hjti + ktki = 0. 
Show that the Jacobian of the transformation is crffeCt, where 

c, = Vgi + A? + M i = 1, 2, 3. 
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16. Illustrate Exercise 15 by the transformation of spherical coordi¬ 
nates. 

17. Find the area of the region 1 £ x* 4* y* S 16, y £ 0 by integra¬ 
tion in the nv-plane [transformation (9)]. 

18. Under the transformation (9) each point of the circle u* + y* = j 
is transformed into a point of the circle x1 + yt = ]. Does this mean 
that the interiors of these circles correspond in a one-to-one way? 

§6. Line Integrals in Space 

The line integral defined in §1 generalizes in an obvious way when the 
curve over which the integral is defined is no longer plane. In §4 we 
gave one generalization of Green’s theorem to three dimensional space. 
There is another known as “Stokes’s theorem.” This relates a line 
integral over a closed space curve to a surface integral over a surface 
spanning the curve. The relation reduces to Green’s theorem for the 
plane when the curve lies in the zy-planc and the spanning surface is 
the plane itself. We prove Stokes’s theorem here. 

6.1 Definition of the line integral 

Consider a curve r with parametric equations 

O * = v{t), y - HO, e = «(f) a 5 i £ b. 

It is regular if it has no double points and if the interval (a, b) can he 
divided into a finite number of subintervals in each of which HO zC', 
W) r C\ w(0 z Cl. If fix, y, z) is defined on I\ then with obvious nota¬ 
tions we define the line integral 

n 

(2) ]rf(x, y, Odx = Hmo 2 /MO, HU), HU)) MO - 

whenever the limit exists. Two other integrals, replacing dx by dy and th 
are defined in an analogous way. As m the proof of Theorem *1, we show 
that when/e C on the regular curve F 

/r /(*, y, z)dx = j‘‘ fiHO, HO, HOWiOdt, 

with similar equations for the other two integrals. The direction of 
integration in (2) is that direction on F which corresponds to the motion 
of a point whose parametric value t moves from a to b. 

Example A. Compute 

Jy x dx + xy dy + xyz dz, 

where T is the piece of the twisted cubic r = t, y - t-, 
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z = t3 corresponding to the interval 0 £ t £ 1. The 

value is 

f0'tdt + 2 t*dt + 3 jf1 t*dt = H. 

6.2 Stokes's theorem 

Theorem 10. 1. f(x, y) e CL 
2. X is the surface z — f(x, y) bounded by the regular 

closed curve T 
3. P(:c, y, z), Q(x, y, z), It(x, y, z) zClon 2 
4. «, 0, y are direction angles of a directed normal to X 

-$ P dx + Q dy + R dz 

= J Js [{Pa — f3a) cos a -I- (P3 — Pi) COS 0 + (Q| - P?) cos y]dX, 

where the direction of integration is clockwise to an observer 
facing in the direction of the directed normal. 

For definiteness choose the direction of the normal to X so as to make 
an acute angle with the positive direction on the s-axis. Then 

(3) Mx, y) = - 
cos a 

cos 7 
/i(*. y) = - 

cos 0 
COS 7 

Let the projection of X and F on the iy-plane be Rxu and I1**, respectively. 
The sense of description of F described in the theorem will give rise to a 
counterclockwise direction on FIW. If a parametric representation of 

Fr„ is x = p(£), y = HO, then one for T is 

X - HO, V = HO, S - /MO, HO) ait £b. 
Then 

fr p(x, y, z)dx = fab Pin o, ho, mo, Howmt. 
Also 

jYn P{x, y, fix, y))dx = jb PiHO, HO, /MO, HOWiOdt. 

Hence, 

fv P{x, y, Z)dx = Jfi" P(x, y, fix, y))dx, 

where the sense of description over is counterclockwise- By Green's 
theorem for the plane 

jVn P(x, !ft K*, y))dx = - IL [P* + Fa/sKSjcw 

“ - J Jx [Piix, y, z) + Psix, y, z)fiix, y)] cos 7 dX. 

\V© have here made use of Theorem 7. By virtue of the second of equa¬ 
tions (3) we see that 
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fr p(z, V, *)dx = / Js [P, cos 0 — Pt cos 7)3! 2. 

This proves the theorem in so far as it concerns P{x, y, z). A similar 
proof holds for Q(x, y, z), using the first of equations (3). The projection 
is again made on the zy-plane. The proof for the function lt(x, y, 2) 
is somewhat diiferent. We give the equations used: 

frM*rV, +ht']dt 

= L Rf\dx + Rf2dy 
J l*n 

= f fn + A./i/, + Rfu — Rij: — fis/i/s — 

-It* [Rift — Rtfi] cos 7 dS 

= J I* C0S a ~ ^ C0S 

This completes the proof of the theorem. It should be observed that for 
each of the three functions P, Q, R we have made our projection on the 
same coordinate plane. It would restrict the surface unnecessarily to 
assume that it is cut only once by parallels to all three axes. Of course 
the equation of 2 may be taken as x = f{x, z) or y - f(x, z). 

Example A. Compute in two ways the line integral 

-X xyz dz 

sin t 
over the circle 

x = cos /, y = —_ 
V2’ V2 

in the direction of increasing L Substitution gives 

sin t 
z = —— 0 S t£ ftr 

i n 

2 %/2 J0 
sin2 i cos21 di — 

8 y/i 
The direction cosines of the directed nonnal to 2, the 

x/2 a/2 
plane of the circle, are 0, - y~. By Stokes's 

theorem 

-/x 
yz cos 

To evaluate this integral project on the .r^planc* 
We have then to compute 

'■ / !.** 
where <S is the ellipse x~ + 2s2 = 1. Hence, 

“4X,/v5*,,feXvr 
dz — 

8 y/2 
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6*3 Remarks 
Stokes's theorem clearly remains true if 2 is of a more complicated 

nature but still divisible into a finite number of parts, each of which 
satisfies conditions like those of Theorem 10* But there is one type 
of surface which must be excluded even though it permits of such a sub¬ 
division. This is the lt one-sided u surface. A sample of such a surface 
can be made by joining together the opposite (far) edges of a long strip 
of paper after a half turn has been made in the paper. The success of 
this method of subdivision depends upon the fact t hat the line integral 
over the lines of subdivision will be taken twice, in opposite directions. 
This is not the case on a one-sided surface, as one may easily verify by 
constructing a model, 

6.4 Exact differentials 

A solid region V is simply connected if any closed curve drawn in 
the region can be deformed continuously into a point of the region 
always lying entirely in the region. A similar definition might have been 
given for a plane region and shown to be equivalent to that of §3,L 
As examples, the region between two concentric spherical surfaces is 
simply connected, whereas the region between two coaxial circular 
cylindrical surfaces is not. Denote a simply connected region by V*. 
Precisely as in §3, we could prove the following results* 

Theorem 11. L P(x, y, z), Q(x, y, z)f R(xt yt z) t Cl in V* 

2. Q-i = Rzf Ri = P^ Pt — Qi in V* 

—There exists F(x, yf z) z C2 in V* suck that 
Fi - P, F2 = Q, F* - R. 

Consider next the line integral 

fy^Pdx + Qdy + Rdz. 
Ja.frjd 

L P(x, yt z)} Q(x, yf z)} R{x> ?/, z)zC{ in V* 

2. Qs = R%.t R\ — P2} P2. “ Qi in T* 
3. F is a regular curve in V* joining (a, hf c) with 

(Xq, Uty Bq) 

The integral (4) extended over V is independent of V. 

This result shows that the integral (4) defines a single-valued func¬ 
tion of (xoi yo, So). Its differential is Pdxo + Qdyn + Rdzo. That the 
simply connected character of the region is essential may be seen by 
consideration of the example 

P = yz(x2 + y*)~\ Q - —xz(x2 + y-)”S R = - tair* (yfx). 

6.5 Vector considerations 

Both Green's theorem and Stokes's theorem take a particularly 
elegant form if vector notation is used. Besides being useful as a means 

(4) 

Theorem 12. 
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of remembering the formulas, the vector form has the advantage of 
putting into evidence ihc invariant nature of the results* Both theorems 
were stated in such a way as to depend upon the particular choice of 
coordinate axes. The vector form will show that the results depend only 
on the curves, surfaces, and regions involved and upon the given func¬ 
tions defined there. 

For Theorem 8, denote by A the vector function whose components 
are P(xt yt z)} Q(x, y, z), R(x, y, z)> Denote by the vector with com¬ 
ponents cos at cos ft, cos 7- That is, g* is a unit vector in the direction 
of the exterior normal to 2*. The conclusion of the theorem becomes 

//, Ilf, (V|A)d7 = ///. Div A dV. 

To introduce vector notation into Theorem 10, we need the additional 
vector which is a unit vector in the direction of the tangent to 1’ 
oriented in the direction of integration. The components of & are 
tlx du dz 
-r-t '-t-j where b is the arc length on r. Suppose s varies from 0 to l 
ds ds ds 
as r is traced once in the direction of integration. The conclusion of 
Theorem 10 now becomes ■ 

f0l (Alt,)* = / fs (VA||„)d2 = / ft (Curl A]^)dX. 

The integrand of the surface integral is a combination of a scalar and a 
vector product. Consequently, it can be written as the symbolic 

determinant 
cos a cos 0 cos 7 

± ji ± 
dx dy dz 

P Q R 

EXERCISES (6) 
1. Work Example A for the curve ;r — cos ty y — cos tt z = sin t, 

0 £ 2tt* 
2, Compute directly and by use of Stokes's theorem 

L xy dx + x dyf 

where F is the unit circle. Use the spanning surface as a hemisphere and 
compute the double integral by the parametric method of §5.3. 

r 1,1,1 

*- / 
J 0,0.0 

yz dx + xzdy + %V dz = ? 

4. If r — (x2 + y2 + compute 

flW2,G 

j 0.5T.O 

cos r 
(xdx + ydy + zrh). 
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5. Give the details of the example following Theorem 12. 
6. Prove Theorem 11. 
7. Prove Theorem 12. 
8. Extend the discussion of §1.3 to three dimensions. 
9. Show that a three dimensional field of force due to the attraction 

of a particle (inverse square law) is conservative. 
10. Prove the converse of Theorem 11. 
11. Show that the surface integral 

J [P cos a + Q cos 0 + R cos tWS, 

is independent of 2 but depends only on l1, the boundary curve of 2, 

if Pi + Qi + Rs = O' 
Hint: Solve 

C2 - B3 = P, Ai-Ci = Q, Bl- A2 = R 

for A, B, C. This may be done by choosing C arbitrarily. 

12. Compute 

J [x cos a + xy cos 0 — 2(1 + *) cos 7]dS 

over any surface 2 spanning the circle of Example A. 
13. Solve 

yz dx + zx dy — xy dz = 0. 

Hint: The equation becomes exact if multiplied by a suitable function 

of z. 
14. Solve 

yz dx + zx dy + dz = 0. 

16. Apply Stokes’s theorem to two halves of a sphere to show that 

// (Curl - 0 

over the entire surface of any sphere. By Green's theorem conclude 
that (V Curl A) = 0. What continuity assumption are you making? 

16. If A — VF in Stokes’s theorem, show that the line integral 
involved is zero over every closed curve F. Hence, show that Curl VF 
== 0. Discuss the continuity assumptions. 

17. Show that, if Pdx + Qdy + Rdz can be made exact by multiplica¬ 
tion by a function X(.t, ?/, z) of class C*, then 

P(Qe - Rt) + Q(Ri ~ Pa) + R(P* - Qi) - 0. 

Verify the equation for Exercises 13 and 14. 



CHAPTER VIII 

Limits and Indeterminate Forms 

§1. The Indeterminate Form 0/0 

The determination of the limit 

(1) lim M 
vUY 

where /(c) = g{c) = 0, is traditionally referred to as the evaluation 
of the indeterminate form 0/0. This phraseology is misleading in as 
much as division by zero is undefined. But the evaluation of the limit 
(1) is fundamental in the calculus. For example, the problem arises 
in the very definition of the derivative of a function 

}’{xi) = Hm fl3* + AJ)-[M] 
aj—*o Ax 

for, both numerator and denominator tend to zero with Ax. In com¬ 
puting the derivative of a given elementary function, some algebraic 
reduction or other device must always be employed to avoid the indeter¬ 
minate character of the limit. For example, 

Hm V1 + &c - 1 _ Hm Vi 4- As - 1 yT TAk 4 1 
Ax Ax V1 + Ax 1 

Ar-*0 \/1 -j- A:T + 1 2 

Other familiar examples from elementary calculus are 

r . Kin x 
hm- = 1, 
s-K) x 

limloE(1+j) = 1, 
*-X> X 

lim 
1 “ cos x A 

x* 2 
r* — 1 

lim- = 1. 
»o x 

It is our purpose hi this section to develop a general method for evaluating 
limits of the form (1)* 

1.1 The law of the mean 

The limit (1) may often be evaluated by a simple application of the 
law of the mean. Observe first that there is no apri&ri way of predicting 
the limit. The following examples show that it may be zero, different 
from zero, or indeed need not exist at all: 

2t6 
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Hm sin* x sin2 
= 0, hm „ 

X i-A) x 

lim 
sin2 x = -H cc t lim- 

%—*0 X* x—»0 

1, 

x sin j\/x) 
sin x 

In the last two examples, the limit does not exist. 

Theorem 1. 
a g x g b 
a < c < b 

1. Az), ?{*)«C1 
2. /(c) = 0(c) = 0 

3. 0'(c) 0 

t Y M = £<& 
™ jf(») ff'(c) 

To prove this we use the law of the mean as follows: 

/(c + ft) = fjc d- ft) — Ac) = /'(c + 0h)h q c 6, 9' < l. 
(2) ff(c + ft) g{c 4 ft) - ff(c) s'(c + 6 li)h 

Here ft Is so chosen that a ^ c + h. ^ b, h ^ t), and Is so small that 
„'(c + e’h) ^ 0. This is possible by virtue of hypotheses 1 and 3. 
Then no denominator in equation (2) is zero. Now cancel ft m the last 
quotient and allow ft to approach zero. We thus obtain the desired 

conclusion. 
If g'(c) = 0, gf{x) ** 0 when x ^ c} f(c) ^ 0, then 

(3) »(*) 

This is seen by applying the theorem to g(x)/f(x) Without the absolute 
value signs in equation (3) we could only be sure that the quotient 

becomes positively or negatively infinite ns a: —► c4 or x—*c—. 

For example, 

lsin *1 _ +0O. .. sm x_, 
lim —— — + «>, 

„ sin x 
hm —— = — 00« lim 

a:-»0 
z-tO+ & *^0- x" ' *~*° *' 

If both f'(c) and g'{c) are zero, the theorem is not applicable. 

log (14 a:) = _J_ = L 
X l + X 3-0 

Example A. 

Example B, 

Example C. 

Example D. 

lim 

.. sin x . 
hm —=- = + »* 
*-*0 

Sic + 2k) - f(c - 2h) 
h 

= [2f(c 4 2ft) 4 2f(c - 2ft)]*_. = 4f(e). 

= 6. 

hm 

„ a:8 4 3z 4 2 3a4 4 3 
£51 - * - 2 ^ 2x - 1.. _ 
Here the form is not indeterminate, and the limit 

should be —3. 
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Example E. lim —^ i;m ^,c rin (X/x) - cos (1/a;) 
sin X x—K) cos X 

xf sin (1/a;) .. x .. . /l\ 
= Inn -7-— Inn x sin (- ) =0. 

«osmi^o \xj 
lim 
x—*o sin x 

Here Theorem 1 is not applicable, in view of the fact 
that x* sin (1/j?) /Cl. Yet the desired limit can be 
evaluated by inspection. We thus see that the con¬ 
ditions of the theorem are sufficient but not necossarv. 

1.2 Generalized law of the mean 

in order to treat the ease in which f(c) = g'(c) = 0, we need a 
generalization of the law of the mean. 

Theorem 2. 1. f(x), g(x) t C1 a £x £b 
2. a< c < (>, a ^ c -(- h ^ b 

(3) —> \f(c + h) - f(o)]g'(c + Oh) 

= Iff(c + h) - g(c)]f (c + eh) 0 < 0 < 1. 

.Notice that equation (2) would reduce to the above equation if 
6 = 6'. The very point of the; generalization is that there is now but 
a single 9. We do not try to write the present equation as the equality 
of two quotients like those of equation (2), for there is nothing in our 
hypotheses to prevent the denominators from vanishing. 

To prove the theorem, form the function 

fix) g(x) 1 

/(c) ■ 9(0) 1 

f(c + h) g(c + h) 1 

Clearly <p(c) = ip(c + h) =0. By Rolle’s theorem, 

/'(c -f Oh) g'{c + 9h) 

f(c) g(c) 
f(c + h) g(c 4- h) 

The desired result is now obtained by expanding this determinant. 

1.3 [.’Hospital's rule 
We now treat the case, f'(c) 

by Theorem 1. 

1* /(*)> ff(*) •& a^x^b 
2- f(fi) = g(c) =0 a <Z c b 
3. g (a:) ?^0 i^c,e£iSJ 

<p(x) = 

<p*(c -\- Bit) — = 0 0 < e < \m 

g'(c) — 0, which could not he handled 

Theorem 3. 

4. lim - A [ + oc ] 
: g(x) 1 - J 

-► lim = A [ ± to ]. 
*-~tg(x) 1 1 

From the law of the mean we have 

g(c + h) = hg'(c + 6-fh) 0 < 0! < j. 

I 
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jf Ji ^ 0j this shows by virtue of hypothesis 3 that g{c + h) ^ 0, Hence, 

from equation (3) 
f(c + h) ff(c + Ok) 
g{e + k) gr{c + Ok) 

0 <<?<!. 

Clearly, the denominator on the right-hand side is not zero. Since 

f'(c + eh) ../'(*) 
h->a (c + Oh) z-*c g (#) 

we have the desired conclusion. 
Observe why the above argument does not produce the conclusion 

that the existence of the limit f(x)/g(x) implies that of f\x)/g'{x). 

„ _ 1 - cos x ,. sin a? cos x 1 
Example T. hm-»— = hm —— = hm 

3f-*0 ar-*G ■ x->Q 

„ „ f(x + 2h) — 2f(x + h) + fix) 
Example O. hm-p-- 

A—*0 
= lim 2fjx + 2ft) - 2f{x + ft) 

ft—0 2A 

-Mm y> + »>-y"(»+»).rM. 
A-* 0 

We have thus far treated the case in which the variable approaches 
its limit from both sides. The case of one-sided limits could easily be 
included in the foregoing results. For example, if c is replaced by 
a or by b in Theorem 3, we should have to alter hypothesis 4 and the 
conclusion so as to have x—- or x—>6 . Observe also that the 
case in which the independent variable -> + «or->-»is also essen¬ 

tially included. For, 

fix) v /(l/() /Tl/0«"2 
hm =4-4 = lim ■ .. = hm 

t-+o+ ff0/0 i-*o+ 0 (1/0* 
fix) 

= lim -77—T" 
»- - g w 

... tT ,. fir/2) - tan-1 * (1 + a?*) 1 
Example H. lim-— ,- = hm-—5 

— lim (1 + £”3)~l = 1. 
r—+ 

Here successive differentiations would never attain 
the goal. An algebraic reduction of the quotient is 

the obvious procedure. 

EXERCISES (1) 

Determine the following limits: 

log 2x 
1. lim 

1/2 ^ 1 
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2. 

3. 

lim 1 + taf 
cos (x/2) 

lim 
1 — cos hx 

^ 2* — 3- 

ctn-1 x 
lim 

+ * tan^far1) 

5. lim — 
* + K V 

6* lim 

7- lim 

8* lim 

log (1 + aTl) 
sin (ar1) 

tarr 
ctn- 

x2 — 4 

^2+ x1 + 3x + 2 

x3 cos (1/x) 
9. lim 

x->q I — sec x 

x log x 
10. lim i-r.j—=-SW 

at—^0+ {1 + 

1 “ sec x r 
11. lim —-—z-1 lim 

1 — sec x 

i-KH- *-*0- 

12-fer.S{- 
Jt = 0 

l)fc{i)/{x + M). 

13. lira Ti 
h->a h 

/(x) g(x) p{x) 
f{x + h) g(x + h) p(x + h) 
f(x + 2/t) j?(x *f 2/i) p(x 4- 2/i) 

14. State and prove a result like Theorem 2 but involving three 
functions. 

§2. The Indeterminate Form *>/ « 

We now turn to the limit 

(!) limM, 
*-« ffO) 

where /(x) and g(x) both become infinite as x approaches c. This can. 
of course, be reduced to the form 0/0 fry inverting: 

(2) ' 
I-+0 1 //(&) I-+C / (z)/f(x)r 

But it may be that this inversion is inconvenient. For example, 

(3) lim J2£f - lim Sst*£. 
*-*+ log 2x „0+ (log x)—1 
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jjow differentiation of numerator and denominator of the latter quotient 
does not get rid of the logarithms but only makes each function more 
complicated. What we should like to know is that L’Hospitabs rule 
applies equally well to both forms 0/0 and w/oc. Then we should have 

for the limit (1) 

(4) lim = Hm 
x—t-e f7\#J x-*c 

m 
7(d 

when the limit on the right-hand side exists. For the limit (3) we should 

then have the value 

lim — = 1. 
2—hQ+ Z 

I 
Obseiwe that, if we know in advance that both limits (4) exist and 

are not zero, we can determine their equality by equation (2). For, set. 

fix) 
B = lim A = Urn ,'<v\ 

Then equation (2) becomes 
B = A~lB\ 

or B = A. But for a practical rule we must know that the existence of A 
implies the existence of B. 

2.1 L’Hospital’s rule 

We now prove a result analogous to Theorem 3. However, here we 
begin at once with the stronger theorem regarding one-sided limits. 

a < x ^ b Theorem 4. 1. f(x), g(x) t C1 
2. lim f(x) = lim g(x) — H-» 

33—*0 + £— 
3. g'(x) ?« 0 

m 

a < x ^ b 

4. lim 
4* ff'O) 

— A [± °°] 

(4) —> lim —— A [± <*>]. 
g(&) 

As in the proof of Theorem 3, we have for a < x < y < 6 

m 0 _ fw i - mm~i 
g(y) - ff(a0 ff'(£) tf(*) 1 - 1](v)g(x)~r 

where x < % < y. Now let x and y both approach at xf making the 
approach so much more rapidly than y that 

lim f(y)f(x)-1 — lim g(y)g{x)~l *= 0, 

This is possible by virtue of hypothesis 2. As a: .and y approach a so 

must £. Hence, 
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fM „ r,™ n& 1 \K 1 - . .. . 

Thi3 completes the proof. Since the proof hu.5 a novel feature, the use 
of the two related variables x and y, let us illustrate by an example. 
Take a = 0, and suppose that 

g{x) = K f(x) = log i- 

For f7(x) it is sufficient to choose x — y2. Then 

ff(sO/ff(*) = y, lim g(y)/g(x) = 0. 
V-*0+ 

Here we could have chosen a: = h(y), where h(y) approach zero more 
rapidly than y-. If x = y\ the quotient f(y)/f(x) does not approach 
zero with y. We must choose a more rapid approach for x. Take 
x = e~l/v. Then 

f(y)/f(z) = y log (l/y) 

lim f(y)/f(x) = 0. 
v—*0+ 

The relation between x and y must depend on the functions f(x) and 
g(x). 

At first siglifc it may seem that the theorem is illusory in view of the 
fact that the differentiation of a function which becomes infinite at a 
finite point can never produce a derivative which remains finite there. 
The theorem is none the less useful, for the quotient of the derived 
function may be subject to certain algebraic reductions to which the 
original quotient was not. The limit (3) is a case in point. By use of 
Theorem 4, we have 

lim _ lim Jd = 1. 
3^0+ log lx %~ 

Moreover, when the variable approaches ± oc, differentiation may 
decrease the "strength of an infinity/' 

Observe that hypothesis 3 is not a consequence of hypothesis 2. 
Consider 

g(x) - - + sin - 
x x 

g'{x) = ~ 1 + cos 1 j- 

Here #(0+) = + «, but g'(x) is zero infinitely often in every neighbor¬ 
hood of the origin. 

£—¥ « X—* « Jf—* & 

Ch, VIII §2.1] limits and indeterminate forms 223 

Example B. lim ^ = 0 for all or- 

The method of proof is not the same for all a. If 
a £ 0, there is no indeterminacy, and an attempt to 
apply L’Hospital's rule would be incorrect. One 
sees by inspection that the limit is zero. If a > 0, 
successive differentiations will always reduce the 
exponent of x to zero or to a number between — 1 and 0. 
In either case, the limit is 0. In all problems involving 
a parameter, it is well to plot one’s results. In the 
present example, we could indicate our results on an 

cr-axis as follows: 

limit 0 limit 0 

not indeterminate indeterminate 

Fig* 15. 

The parenthesis,), about the origin indicates that 
that should be included with the points to its left* 

Example C. fim^ =0 a, $ > 0. 

The arrows of Figure 16 attached to the positive 
<*-axis and to the negative £-axis, for example, indicate 

not indeterminate 

limit 0 

1 

indeterminate 

limit 0 not Indeterminate 

limit 1 

indeterminate 

limit + co 

not indeterminate 

limit -b 

Example D. 

Fig. 16, 

that these should be included in the fourth quadrant. 
The origin goes with none of the four quadrants, for, 
when a = jfr = 0, the quotient reduces to 1 and, hence, 
has the limit I , as indicated in the figure by the arrow 
coming from the origin* 

x — sin x 
lira - — lim 

^ lim 
* 

0 - ¥) 
1 — cos X 

1, 
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Here one can evaluate the limit by inspection. Even 
though both numerator and denominator become 
infinite, Theorem 4 is not applicable. It is hypothesis 
4 that fails. The conditions of the theorem are thus 
seen not to be necessary for the existence of the limit 
(4). 

EXERCISES (2) 
Evaluate the following limits: 

tan x 
£5-11/2+log (2x — t) 

a v e*" v % lim — j lim —* 
i—*+ * ^ X—* — k 6* 

pax p<tx 

3. lim —r> lim —— 
X—V + S5 % X—*■— « % 

30 (log x¥ 

5. lim 
x (log x)a 

I—M 

6. lim 
Xs 

„ J 
X—*+ x- — cos x 

f* 
/ &'dt 

7. lim J 0 

T—++ * ex* 

8. lim 
I fx | sin 

X—*+ » X Jo i 

lim xz 
r* - COS X 

9. lim 
T—»0 

- i pm im - / — 
0 $ J 0 

sill (] 
dt. 

10. Prove that when lim f{x) ~ + «> thcn/'(x) cannot remain finite 

as x —+ 0+. 

Hint; Use the law of the mean. 

§3. Other Indeterminate Forms 

A variety of other indeterminate forms occur. Consider a function 
of the form 

ifix) z o. 

Let f{x) and g(x) tend to zero or to + co. We are thus led to the four 
possible forms, 0°, 0”, =°°, =c°°, A little consideration will suffice to 
show that only two of these are indeterminate. Other hide terminate 
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forms are — tc an(i i". We can reduce all of these to the two 

cases already treated. 

3.1 The form 0-oo 

Let 
lim/(x} = 0, 
e—+a 

lim g(x) = + oo. 
X—Kl 

Then by writing 
f(x)g(x) = f(x)/]gU)]~l 

or 
f(x)uix) - g{x)/\f{x)]-' 

the indeterminate form 0 - ^ is reduced to 0/0 or to <»/«>, respectively. 
Which of these to use will depend on the functions involved. 

Example A. 
1g£[ X 

lim x* log x = lim —- 

* * —1 
= lim - = 0, 

x—>0+ (XX a 

(« > 0) 

If we had reduced to 0/0 instead of to co/oo? 

L’HospitaPs rule would have yielded no result. There 
is no guarantee that differentiation of the numerator 
and the denominator of a quotient will simplify it, 

m X „ I 
Example B. lim x ctn x = lim—- = lim-—*— — 1. 

x—+n j—tan x x—+o sec x 
Here wTe have reduced to 0/0. Eeduction to oc/qc 
would have led only to further complication. 

3,2 The form *> — «> 

Here we consider 

m 

where 

lim \J(x) - 

By writing 

(1) 

lim/(x) = lim g(x) = + <#, 
x—x—*o 

f(x) - g(x) = 
ffCs)-1 ~ /(a:)-1 

the form is reduced to 0/0. Actually, this reduction is not of great 
usefulness in practice, for it usually produces a quotient so complicated 
that the use of L'Hospital's rule is not feasible. 
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Example C, lim [- —J— ] = lim s*n x 
sin XJ x si 

lim 
cos x — 1 

= lim 

— x 
sin x 

— .no x 
*-•►0+ sin x + x cos x *-+0+ 2 cos x — x sin x 

= 0. 

Example D. lim [x i/z2 + 1 — = lim x _ 1. 
VF+F + x 2 

Here we have multiplied and divided by y/x- + 1 + .r. 
It Is evident that the general reduction (I) would have 
been useless. 

3.3 The forms 0°, 0", <0 *>", P 

Let 

lim/(x) = lim p(x) = 0, 
2— 

Then 
“ gats) /(*» 

hm/(x)tf(aB) — e%c = lim g(x)\ogf(x) 

lim A(x) = +», /(x) 0. 

The form 0° is reduced to the form 0 * oc, In a similar way, we see 
that 0* is not indeterminate: 

lim/(x)Ats> = lim — 0. 

The same logarithmic reduction reduces the form *>° to the form 0 ■ » 
and shows that is not indeterminate. 

Example E, lim x£ — lim e*10** = L 
1-^04* jf—»0+ 

Example F. lim xfl/ac} = Iiin eilo*x}/x = 0, 
^0+ z-h*0+ 

Example G. lim (l/x)x = lim ezio* Wx> = \. 
ac—MJ+ a;—H)+ 

Example H* lim x* = lim e*lo*£ = 00, 
Z-► 30 x~+ « 

The form l* is also seen to be indeterminate. It is handled by the same 
logarithmic reduction. 

Example L lim im [ 1 + - ) = lim ex lQC two/*)] = 
-+» V »-»30 

a 7* 0. 

if (i = 0, the result is still accurate, but there is no 
indeterminate form. The function is constantly equal 
to unity and, hence, lias unity for its limit. 

EXERCISES (3) 
Evaluate the following limits: 

1. lim log x tan (irx/2). 
JE“*t 
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2. lim x*°* tl/a!\ 
31—+-f‘ ® 

3. lim (tan x)*“ **. 
1— »ir/4 

i. !im (log a:)10* 

5. lim (iHj)'"'. 
*-M»\ * / 

6. lim [x-3 — ctn2 x]. 

7. lim {log x)*1 Ca?"w. 
Z—*1 + 

8. Sim (log x}*“ (”/2L 
»—*1+ 

9. lira llogxI^^L 
z—+1 — 

10. lim Man si""1. 
x-rr/2+ 

11. lim |tan*|“**. 
x-*r/ 2- # 

12. lim x11*. 
z—*Q-f 

13. lim (log x)‘. 
X—# to 

14* lim €**€***' 
s—►— » 

16. lira [x2 y/4x* + 0 — 2x*]. 
£—►+ » 

16. lim [ -v^xu — 7x6 — x3]. 
*-*■+ <0 

17* lira (x - a)“! |/(£(x, x), A(x, x)) - }{g{a, a)f h(a., a))]* 

lo _ f <V(S, * tan a) 3/(0, 0)1 , 

18-lsr w.-ssrr ■ 
19. lim VI ” a: log log (1/x). 

2— *1 — 

20* lim y/x log log (1/x). 
x—*0+ 

21. lim x Vlog (1/x) c“VWo/4, 

§4. Other Methods. Orders of Infinity 

In many cases the indeterminate form 0/0 is not easily treated by 
use of L'Hospital's rule. The differentiation involved may be tedious, 
or indeed may serve to complicate the quotient in question. Certain 
other methods are available. We describe them below. By a study 
of the rapidity with which various functions become infinite, one may 
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often evaluate the indeterminate form <=°/a> without any differentiation 
at all. 

4.1 The method of series 

The following result may be regarded as a generalization of Theorem I 
As in Theorem 4, we shall deal here with one-sided limits. 

Theorem 6. 1. f(x), g(x) e Cn+l 
2. /'*> (a) = p«(a) = 0 
3. gin+l){a) r* 0 

lim /(*) /("+1)(a) 
1-.0+ ff(z) 

By Taylor’s formula with remainder, we have 

a £ x 
k - 0, 1, ■ • 

§ b 

' . « 

g(x) g'"+l'(Y) 
a < X, Y < x £ b. 

Here we have chosen * so near to a that 0(,1+1>(K) ^ 0, This is possible 
by virtue of hypotheses I and 3. We now obtain the desired result by 
letting x approach a. 

If ffu+1)(ci) = 0, 0(n+,)O) ?£ 0 (a < * £ b), f'+via) ^ 0, we obtain 

lim M 
?{*) 

“ “I- flO , 

When the Taylor expansions of tlie given functions are known, this 

theorem enables us to evaluate the form 0/0 without any differentiation. 

Example A. lim 
i-»0 

Sill X — X 

Since we know the power series expansion of the 
numerator 

sin x — x 
x * £6 _ 
31. 5! 

we know without computation that fnf{0) = — L 
The technique suggested by Theorem 5 consists simply 
in replacing f(x) and g(x) by the first non vanishing 
terms of their Taylor developments. 

Example B. lim (x Vx- + i - x*) = ? 
I—*■ m 

Here we must replace x by 1 fy and let y approach zero 
in order to apply Theorem 5, Obviously, the same 
purpose will be served if we expand the original 
function in powers of l/x. 
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v*s + i - 

x- 

lim [x Vx1 + 1 — x2] = „ 

_J__ J_ + 
2x* Sx* ^ 

1 
1 

229 

EXAMPLE C. 

Care should be taken to expand the functions in ques¬ 
tion in power scries which converge at the point that 
the variable is approaching. Thus, it would be incor¬ 
rect to replace sin x by xt the first term in its MacLaurin 
development, in order to evaluate the limit 

lim 
sin x 

x 

lim 
x^0 

1 
CSC x- 

X 
sin3 x 

x 
6 

lim 
7x* 

3.5 lx* 
7 

360 

Here we have used formulas 772 and 777 from Peirce’s 
Tables. 

4.2 Change of variable 
A change of variable frequently simplifies the work of evaluating an 

indeterminate form. 

Example 1). Show that, if 

then fix) t Cl. 

f(x) = (T•'** 

m - o, 

We have 

re*) - S'** 

/'CO) = lim 
fc-K> 

m -si o) 
h 

= lim 
a—-a 

e-l/M 

h 

- lim 4 ~ 0. 

X 7^ 0 

Here we have made the transformation i — ft-2 before 
using L'HospifcaFs rule. Direct application of the rule 
would have been useless. To show that /'(x) is con¬ 
tinuous, we must show that 

But 

lim f'(x) =/'{0) « 0. 
*—*o 

„ 2e~l/£i 2^2 
lim —i— *« lim —p — 0. 
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lu like manner we could show that f{z) c C“ and that 

r*K0) = o k - o, i, 2, * • ■ , 

4.3 Orders of infinity 

Let /(x) and g{x) be two functions which become positively infinite 
as the variable x approaches a finite limit or becomes infinite. Then we 
introduce the symbol < by the following definition. 

Definition 1. f(x) <. g(x) lim = 0. 
9(z) 

The relation may be read: “/(x) is weaker than g(x)” or l‘f{x) is a lower 
order infinity than g(x).” For example, if x is becoming infinite, then 

(log x)iu < 

We make a brief table of infinities arranged in the order of increasing 
strength: 

■ ■ • ■< log log x -< log x < x < g1 < e«* c • • • , 

The order of any infinity is increased by raising it to a power p > ], 
is decreased if 0 < p < 1, By use of this principle one could interpolat e 
any number of functions between a given pair of the above table. 

Example E. log log x < (log x)p p > 0. 

lim laSiSS-5 = lim LSJ = 
*-+- (log x)p IJP 

Example F. Find an infinity stronger than all the functions x”, 

where 0 < p < 1/2, but weaker than s/x. Such a 

function is \/x/log x. Obviously, for every « > 0 
(e < 1/2), wc have 

Vj , Vx r 
x1 log x ^ 

Example G. Wliich infinity, ev/log-r or x, is of higher order? It can 
easily be shown that /(x) < g{x) -y cJ(zl < caW. 
By use of this result, one sees that 

^ x 

Example H. Arrange the infinities x1, e* x!o** in the order of increas¬ 
ing strength. We have 

Example I, 

(log x)s < X < x log X 
xlDB* •< e* < x1. 

Evaluate the limit 

VTog x log (log x) 
lim 
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One easily recognizes the infinity in the denominator 
as the strongest of the three* Since x2 is weaker than 
this one but stronger than the other two, we have 

lim 
(Vlog x/x)[\og (log x)/x) _ 0 - 0 _ 

- 0* 

In evaluating limits of functions consisting of many factors, we 
should separate off those which neither approach zero nor become infinite. 
since they have no effect on the indeterminate character of the product. 

In conclusion, let us point out how the notion of strength of infinity 
enters into one of the famous problems of mathematics. If pi — 2, 

= 31 * ‘ ' ypn = the fith prime, Euler showed that the series 

<x 

y i 
diverges and that 

>t-i 

pn < n1+1 

for every positive e He was able to conjecture from these two facts the 
strength of the infinity p„. The most obvious one satisfying the above 

conditions is n log n: 

l 
Tl 

n log n 
n log n < n1+i. 

ft Was shown in 1898 that this conjecture is correct and further that 

lim V»  
n log n 

= L 

Tliis latter result is known as the “ prime-number theorem.” 
It should be observed that the reciprocal of an infinity is an infinitesi¬ 

mal and that one could classify infinitesimals according to strength, 
it is perhaps easier to reduce all infinitesimals to infinites. 

Ejcampi-e J', lim ctn x \Z\og{i/x) = ? 

lim x1/z(x ctn x) Vlog (1/s) = 0, 
T^o+ 

since 

\/]ogx < xm x + ao. 

EXERCISES (4) 

In the following exercises the student may assume as known any of 
the senes expansions given in Peirce's Tables. Free use of the tabic of 

infinities given in §4*# may also he made. 
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Evaluate the following limits: 

sec x — 1 

lCh+ VIII 

1* lim 
x .cos x — 1 

x2 -h log cos3 x 

(log cos a;)* 

x2 ctn x — x 4- (xf/3) 

2. lim 

3. lim 
%—.o tan-1 x — x + (*®/3) 

4. lim 
tan-1 x ** tt/2 + 

5. lim 

ctnh~l x — x~l 

x2 + 2 log cos x 
*2 + 6 log (sic x/x) 

6‘ ^ l - I) Z5 ! z | 
7-£sl> />'■" -?+i} 

COS £2d/ 

8. lim 
6 sin^1 x “ 6x — x3 

9. lim 

10- Urn sin (l/x)(iog x)10\/x. 
i—*+« 

11. lim 

12. lim 

+ - (V^),oaI(log *)VS 

{sin- rr)^1”* tan"1 (1/x) 
t^o_ (sinh x)(c23r — 1J sec^1 (1/x) 

13- Prove that/(x) < 0(x) -> c/U) < 
Is the converse true? 

14- Arrange in order of increasing strength the infinities: 

3f*} (iog 

16- Interpolate an infinity between e* and every positive 

16. Interpolate an infinity between x(log x)p and x(log x) 
for all positive numbers p and g. 

17- Show that/(x) c C2 in Example D. 

18. Show that f(x) e in Example IX 

power of 

<“« log log 

x* 
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§5. Superior and Inferior Limits 

We introduce here certain notions concerning limit points of sets ot 
joints. We shall find these notions useful in establishing a fundamental 
criterion for the existence of a limit known as “Cauchy s criterion. 

5.1 Limit points of a sequence 
We shall use the notation {5.}? for the sequence of numbers 

Si, Si, Ss • ■ * . 

Definition 2. The sequence (S.lf has a limit paint A 4—i> for 

every e > 0 there are infinitely many integers ni, n->, »*, ■ such that 

\Sai-A\<€ k = 1, 2, * • * . 

Note that the elements of the sequence {Sn}f need not be distinct. 
As a consequence, all of the infinitely many elements S„t of Definition 2 

may be the same number. For example, if 

t-Sn}r = 1. -1. 1| -1. * • ■ > 

then .‘1=1 is a limit point and the integers nt may be taken, for 

example, as 1, 3, 5, * • • . Then 

<S„, = 1 k = 1, 2, 3, 

In like manner, the number -1 is also a limit point of the above sequence. 

Definitions. A sequence |S„)r is bounded above {below) i—» there 

exists a number M such that 

Sn < M (-M < 8n) n - 1, 2, * • • • 

Theorem 6. // [ ] f is bounded above and below} it has at least mie 

limit paint. 

Lct 15.1 < M » - I, 2, • • - - 

There must be infinitely many elements of the sequence in at least one 
of the intervals (-M, 0), (0, .1/), say the latter. Then there must be 
infinitely many elements in at least one of the intervals (0, Mj 2) r (Mf 2, M). 
By successive halving of intervals, we arrive thus at an infinite sequence 
of intervals, each being half of its predecessor and each containing 
infinitely many elements. The intervals of the sequence have one, and 

only one, common point A, which is a limit, point of !S„}f. 

Definition 4. The limit superior (inferior) of the sequence {5„]™ is A, 

ftm 5. = A ( lim 5. = A), 
7i—»+ «o « 

( ) The sequence is bounded above (below) and A is the 

largest (smallest) of the limit points of the sequence. 

1 
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Definition 6. The limit superior (inferior) of Ike sequence 
+ (-CO), 

lim S„ = +« ( lim S„ ■= —00) 
n-*+ * n—*+ * 

<—y [Sn\? not bounded above (below). 

Example A. {*Snj?1 = 1,0, — I, 2, 0, -2, ■ . • . 

This sequence has only one finite limit point, 0. But 

Inn Sn — +60, lim S„ — — 00, 
H- as 

lix ample B. iim n sin2 = + « 

lim n sins = 0. 
«-»+* “ 

It should not be supposed that the elements of a sequence are always 
less (greater) than the limit superior (inferior) of the sequence. 

Example C. Inn ( 1 + -) cos nar = 1 
f*—♦+ « \ ft/ 

lim f 1 + ~) cos nr = — 1. 
\ V 

No element of this sequence lies in the interval {--I, 1). 

5.2 Properties of superior and inferior limits 

We list below some of the useful properties of the limits superior and 
inferior. They become immediately apparent if one represents the 
elements of the sequence as points on a line. 

(a) lim S„ and lim Sa always exist or are + «>. 
This is the great advantage that these operations enjoy over the 

limit operation. Note that lim cos nir does not exist; nor does the 
limit equal ± «. 

(b) hm S„ % Km *S„. 

(c) lim Sn = A (+ oc or — oc) <—> lim Sn= fim = A (+ °o or — =c). 

(d) Sn < Tn, » = 1,2, • ■ • -> fim S„ £ lim Sn g fim 7V 

(e) lim Sn = A > for every « > 0 
(1) there exists an integer m such that S„ < A + t, n > m; 
(2) there exist integers nh na, * • ♦ suck that S„, > A — t, 

k — 1,2, * - * 
(f) A < Sn, n = 3, 2, ■ • • ; fim S„ = .-} -§ lim Sn = A. 
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Let us illustrate one way in which fim is frequently used in analysis. 
Let us suppose that to an arbitrary t > 0 there corresponds an integer 

m such that for n > m 
(!) \Sn\ < € + v(n) n > m, 

where v(n) is some function which tends to zero as n becomes infinite. 

Then by property (d) 
(2) fim [4.1 £ e. 

We are at liberty to let n become infinite in Inequality (1) since it holds 
for all large integers n. Since e was arbitrary and since the left-hand 
side of (2) is a non-negative number, we sec that 

Tim |S„| = 0. 
n—*+ * 

Then by property (f) 
lim |5„1 = hm Sn = 0. 

00 n—» T * 

5.3 Cauchy's criterion 

Theorem 7. lim Sn exists i—► to an arbitrary t > 0 corresponds 
n—*+ « 

an integer m such that when n, n' > m 

(3) |iSn - &| < *• 

Let us first prove the implication “ We have given that 

lim Sn = A. 
n—»+ 40 

Tills implies that, for an arbitrary e > 0* there is an integer m such 

that w henever n > m 

|& - A\ < i/2. 

If n* > m, we have by this same inequality 

\S* - S« 1 £ |Sn -A\ + |4* - A\ < €, 

This is what we were to prove. 
For the opposite implication i-we begin with (3). In particu¬ 

lar, we may take n* = m + 1. Then 

(4) ‘ &*+! - € < Sn < Sm+i + € n > flk 

By properties (b) and (d) above, we liave 

(5) Sm+1 — € g lim Sn £ Hm Sn g S«4-i + t- 
n-*+ ■ 

It is permitted to let n become infinite in (4) since tl)e relation holds for 
all large n. But (5) implies that lim ^Sr* = Tim Sni since e was arbitrary. 
rrhe proof is now concluded by use of property (c) above. 
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We observe in conclusion that the notions of limit superior and limit 
inferior extend in an obvious way to functions. For example, 

flin sin x = 1, lim sin 2; = — 1. 

EXERCISES (5) 

Obtain all the limit points, lim and lim for Ike following sequences, when 
n = 1,2, 

237 

1. (-X).(l +i) 

2. n sin 
nir 

3. 
n + ( — l)nn* 

ril + 1 

4. (1,5 + (-!)•)* 
mr 

5. [(-l)»+Usm^ 

6. (—n)n(l + 

UW 
7. [1 - (-1)1 sin 2S 
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17. Prove lim Sn - +<x> -* liin S” = +“‘ 

18. Prove Urn Sn = — 00 * ~ 50' 

19. Prove that if /(*) e C' and If (*)[ < 1 in the interval 0 < a: £ l 

that lim fin-1) exists. 

Hint: Use Theorem 7 and the law of the mean. 

* 

20. Show that ^ diverges. 

1 
Hint: Show that the sequence of partial sums S„ “ 1 + l[2 + 

, . + 1 /«■ does not approach a limit. In Cauchy’s theorem choose 

. = 1/2 and show that 
sln - A & * * - i, M, • * ■ 

21. What docs property (e) become if the sequence is replaced 

by a function /(z)? 

♦ flTT . 7MT 
8, sm — sm -r- 

4 2 

« . tmt , , nir 
9, sm — + mn ^ 

10. e” sin (w/4). 

11. In the sequence of intervals described in the proof of Theorem 6r 
show that the sequences of left-hand and right-hand end points both 
approach the same limit, and thus establish the existence of the point A. 
Show that there are infinitely many elements of the sequence {SnJf 
in every neighborhood of A. 

12. Construct a sequence which lias finite Emit points —2, 0, 1 and 
for which 

lim Sn — — sc, lira Sn — L 

13. Prove property (c). 

14. Give an example illustrating (d) with the equality holding in 
the conclusion. 

15. Prove property (e). 

16. State without proof a property analogous to (e) for fim, 

does property (e) become for Hm Sn = + 00 ? lim Sn = 

Em Sn — — *3 ? Hm Sn ~ + <*> ? 

What 

- X? 



CHAPTER IX 

Infinite Series 

§1. Conversence of Series. Comparison Tests 

'['he present chapter introduces briefly the theory of infinite series 
Most students will have had an earlier acquaintance with the subject. 
The early part of the chapter may be regarded as a brief review pre¬ 
paratory to the study of improper integrals. In the study of such 
integrals, it is extremely useful to keep in mind the analogies between 
series and integrals. For this reason, it is desirable to have the funda¬ 
mental facts about series in hand before studying improper integrals. 
The latter part of the chapter introduces the important notion of uniform 
convergence of series. We begin with definitions of convergence and the 
comparison tests for convergence. 

1,1 Convergence and divergence 

Consider the infinite series 

(1) / Ut = Ui + U2 + tt* 4- * * • * 
Jfc«i 

Denote the sum of the first n terms of this series by Sn, 

(2) Sn = ^ Uk — lii + U2 + ' * * + Mn ft — 1, 2, 3, * * * J 
k^i 

Definition 1. Series (1) converges 4—^ lim Sn = A. if lim Sn - 
ft-► « n—* bi 

A , the number A is the sum or value of the convergent series. 

Definition 2, A senes diverges if} and only if, it does not converge. 

Example A. to.-— L/ \h k + 
k-l h) converges and has the value 1, For, 

Sn = 1 — (n + 1)~*, and this tends to l as n becomes 
infinite. 

(—l)fc diverges. For, Sn is 0 when n is even, is 

ee 

l 
k~X 
— 1 when ti is odd. Hence, Sn approaches no limit. 

238 

Example B, 
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Example C. ^l=l+l+l+‘*-. Here jS„ = n; this in- 

k-i 
creases without limit as ?i becomes infinite. Hence, 
the series diverges. 

A series of particular interest is the geometric series. Since it can be 
used for comparison, let us give it a special designation. 

Test series ryh _ 

0 1 
Fig. 17. 

d 
—r 

The diagram indicates that the series converges to the value (l — r) 1 
for —I < r < 1 and diverges elsewhere. When a series contains a 
parameter, as here, convergence results should be indicated on a diagram. 

Theorem 1, Series (1) converges -> lira un — 0. 
n—* 

For, by hypothesis lim = A. Hence, 
ft—* a= 

lim u„ = lim (<S„ — iS„_t) = .4 — A = 0. 
ti—* ® n—* * 

1.2 Comparison tests 

Theorem 2. I. 0 g uk ^ vk k = 1, 2, • ■ • 
tc 

2. y Vk <00 
k=t 

—» y w* < oo. 
l 

We use the symbol u < & ” to indicate convergence of a series of 
positive terms. It becomes meaningless for other series. Define j$„ by 

equation (2) and set 
n 

Tn — ^ Vk n = 1, 2, 3, * * * 
k = 1 

lim Tn = B. 
n—. os 

Since the sequences {3„}f and {T„ } f are both increasing, we have that 

Sn£Tn^B 

and that S» approaches a limit A *£ B. 
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Theorem 3. 1. 0 g y* £ uk 
■0 

2- 1 Vk 
Jt-l 

t Uk “ 
*-l 

We use the symbols “ = *>” for divergence of a series of positive 
terms. The series (1) must diverge. For, if it converged, we could 
prove the convergence of the w-serics by Theorem 2 by interchanging the 
roles of Uk and y*. 

Test series Tz Up) -Si 
i ** I 

Fig. 18. 
The series converges for p > 1, and its value is denoted by f(p), a 
function which has been tabulated. The series diverges elsewhere. 
For p = I it is the divergent harmonic series. These facts will be 
proved later, but for the present the series may be used as a test 
series. 

Example T). f ±_ 
4r k* - 4 

converges. 

*-3 
Take a* = 2k~-. Then 

k'- 
— < — 
4 jfc2 

whenever 

Jfc* < 2r- - 8; 

that \b, for all k > 2. But the ^series is T% with p = 2, 
except for the constant factor 2. 

Example E. / 
4;v4 + 7 

diverges. 

Take vk = (2fc)~». Then 

Vk = —7= < 
y/2k y/k + 7 

* = 8, 9. 10, 

Hence, the original series, shorn of its first 7 terms, 

diverges by Theorem 3, using T2 (p = $)_ Conse¬ 
quently, the complete series diverges. 

I 
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EXERCISES (1) 

Test the following series for convergence. 

y * 
u + 1 

im 
* = 1 

«? 

V +1 
Li a4 — 9* 
k = 4 

4. ) sin &“s. 

k-i 2 
k-l 

« 

X sin’! 
fc— i 

V 
Z/3*‘ 
k “ 1 

//inf: Show (%)* < x~3 for large x by consideration of lim *3 
« 

•2 
k~\ 

a corresponding theorem for divergence. 

CO 

2 7. Prove: 7, Uk converges aik (every c). State and prove 

8, Prove 

M ao 

fc = l fc-l 

Vk converge 

m 

I 
fc-1 

(ilk + rjt) converges. Does 

this imply that ux + Vi + u* + r* + * * * converges? 

to ac 

9, Prove: ^ Uk converges <— > ^ Uk converges. 

* = t Jfc™ m 

10. Prove 

as 

-2 (u* + Vk) converges 

*-i 
2. lim Vk — 0 

fc—I- « 

-^ tti + Vi + ii2 + ^2 + ■ ■ - converges. 

Give an example to show the result false if hypothesis 2 is omitted. 

11- Prove: 1, Uk, Vk > 0 k = 1. 2, * ■ 
2. lim Uk/vh = A 

k-r* 
00 

2 
2 

tf* < 00 

Uk < 00- 

3. 
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§2, Convergence Tests 

We introduce here a number of the more useful tests for the con. 
vergence of series. In the present section, we are dealing only with 
series of positive terms. 

2*1 D^lemberts ratio test 

Theorem 4, 1. u* > 0 
^ ^ I? % 

% ~ = l < l (1 </<«=) 
k-+» Uk x — * 

-► Uk < 00 (= 00 ), 
k-l 
If l — i, the lest fails. 

By hypothesis 2 with l < I we have for any number r between ^ and I 

ma+i 
< r ip = rat, m 4- 1, - * * 

P = li % • • ■ . 

Here m is some integer depending on n By Theorem 2 and Tj the scries 

Ma 
um+p < rpum 

z ***» 
Bl+I 

and hence the entire series, converges. 

If l > I, or if I — +ao, the ratio u*+iM is greater than 1 when A 
is greater than some integer m. That is, 

Hence, 
Uk ilm > 0 k — 7tl -f- 1, m -j- 2, 

lim Uk t* 0, 
A—+ <c 

and the series diverges by Theorem 1. 

To show that the test fails when / ~ 1, we observe that 

t 
*-1 t?i 

<«, 

and that in both cases 1=1. 

2.2 Cauchy’s test 

Theorem 5. 1. uk > 0 

2 Jim = l < 1 (!<;§«) 
A - 1, 2, 

ft—* no 
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—► lub< « (= so). 

The test fails if l = I. 

The proof is similar to that of Theorem 4, and is omitted. 
J 

2,3 Mactaurin’s integral test 

Theorem 6, 1. f (x) & 0, e C, J, 1 g x < & 

2. lim [I f(x)dx = A (—<*>) 

/(A) < * ( = M ). 

The symbol “ J, ” indicates that /(x) is nomnereasing. ft" /(.a:) e 01, 
then f(x) e i <—► f(x) SO, By hypothesis 1, 

f(k + l) £ f(x) £ /(A) A g x g A + ]. 

Integrating each term of these inequalities, we have 

/(A + 1) S f*+lf(x)dx § /(A) A = 1, 2, • • • , n. 

Adding these inequalities, we obtain 

n + l n 

(1) 2 /{A) ^ f'+imdx £ 2 /(A). 

If we have hypothesis 2 with the finite number *4, then by the positiveness 
of/(rr) and by inequalities (1) 

n.4* 1 

J m a +/(i). 
1 

Hence, 
* 

y /(/o Z A + /(1) < «. 
* - i 

If we have the alternative hypothesis 2, then, letting n become infinite 
in (1), we obtain 

IS 

“ = z 
A-l 

Observe that there is no case here in which the test fails. The limit 
in hypothesis 2 must exist or else the integral must become positively 
infinite with R} since the integrand is non-negative. 
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We can now establish the results stated about test series TV [f 
P > 1 take f{x) = x~p. Then f'{x) = —par*-1 < 0. Also 

Urn r 
R-* « J \ 

= 

p -1 

so that Theorem 6 assures convergence. If 0 < p g l, the test \$ 
still applicable, and 

fR f H'-p 1 1 
im / x~v dx — lim -—— — ^—— — so 0 ^ n < i 
->» Ji k_„L1-p i - pj “ J 

lim 
R 

= lim log It = oe 
R—+ » P = b 

Divergence of the series is assured. For p < 0 the test is no longer 
applicable, for then ar**e f. But we see that the series diverges by 
Theorem l. 

Test series Tz: 

» 

y l 
/ j &(l<jg k)p 

ft = 2 
& 
i 

Fig, 19. 

Here the discussion is much the same as for T2. We have 

'j? t 
Urn 

J2-+ CO 
; fix = 

1 
p > 1 

Corollary 6. 

3 x(Iog s)” (p - l)(tog 2)p-' 

= ao 0 | p ^ L 

A £ £/(*) Z A +/(1). 

ft ^ 1 

This follows from inequalities (1) by allowing n to become infinite* 
It frequently enables one to obtain estimates for the value of a series. 
For example, 

<2> S fW S f&j P > I- 

In fact, since the terms of the series are all positive, the sum of the aeries 
is certainly greater than its first term* Hence, 

l g ftp) £ p “ 1 

from which we conclude that f(p) tends to 1 as p becomes infinite* 
Inequalities (2) show that 

lim f(p) = + 
p-+i + 
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EXERCISES (2) 
Test the following series for convergence. 

ft^l 

‘•2 
ft=* 1 

k + 1 4. y_i_ 
fr2 + k L< ;' (log k) (1 og log k) 

ft = 3 

t 

/fc3<r* 6. 
* 

y 1 • 
Lf (log k)k 
*-2 

4ft 

log it 
kp 

6. y fc~i (i+fc-1). 

(log k)2 
(log 2)* 

^-1 

fc«l 
8. Test the series 

« 

V A 
Z/2* 
k~i 

by use of Theorems 4, 5, and 0. 

9. For what values of r is the integral test applicable to the geometric 

series? Apply it for these values, 

10. By use of Corollary' 6 prove that 

-1 g ,—L 4. | 0 < r < I. 
log r = 1 — r “ log r 

Check geometrically or by the law of t he mean* 

11* Prove Theorem 5* 

§3. Absolute Convergence. Alternating Series 

We next, consider series whose terms are not restricted to be positive, 
introducing the notion of absolute convergence. We then demonstrate a 
theorem of Leibniz useful for testing alternating series* By its use we 
exhibit series which converge but which fail to converge absolutely* 

3*1 Absolute and conditional convergence 

Definition 3* The series ) w* converges absolutely 

k 
converges. 

For example, the series 

2w 
k= I 

(-1)* 
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converges absolutely. Of course, any series of positive terms which 
converges, converges absolutely. 

Definition 4, The series ^ uh converges conditionally <_y n 

k~l 
converges and 

ft 

I M = 

We shall show presently that t he series 

PC 

I (-1)* 
k 

converges* Accordingly, it. converges conditionally, since the harmonic 
series diverges. 

Theorem 7. ^ M < ^ —► Y uk converges. 
£=i ki 1 

Since 

H«*l £ uk £ Mi 
we have 

0 g \uk\ — ut ^ 2|u*| k - 1, 2, 
Hence, the series 

(1) 2 (M - «*) 

converges by Theorem 2, taking vk = 2|i^|* Subtract series (I) term 
» a- 

by tom from the convergent series \ i«*|. The resulting series Y w* 
*-» A-l 

must also converge, and the proof is complete. 

By use of this result we ean at once extend the applicability of 
Theorems 4 and 5. 

Theorem 4*. 1. lim = / 
k-> * Uk 

2. 11\ <1 (I < |/| £ pc) 
CO 

-^ 2 Uk convcr8es absolutely (diverges). 
jfe-i 

Theorem B* 1. lim tf\uk\ = l < 1 (1 < i g «) 
k—► ® 

^ combes absolutely (herpes). 
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These theorems are not restricted to series of positive terms* Their 

proofs are omitted* 

3,? Leibniz's theorem on alternating series 

Theorems* 1* t?*E j k — 1* 2, 
2* lim = 0 

<o 
^ (— l)fcin- converges. (2) -► 

*=t 
Since the sequence is a decreasing sequence tending to zero, it 

"clearthat „,a0 & - i, 2, - - 

so that the series (2) is an alternating series* That is, its terms are 

alternately non-negative and nonpositive* Since 

(3) - S*n-1 + + Vftfr ” 
S2fl+1 — S2ti — ^2n+i = + ^2n — 

we see that every S with even subscript is greater than every & with 

odd subscript. Moreover, since 

t>2n — —1 £ V%n — ^2*4-1 = 0 11 = l ’ j 

it follows that 
S2ft E i i SlfH-t E 1 * 

Hence* both sequences approach limits 

lim jS2n “A, lim $2rn-i = . 
^-4 N B ® 

But* if we let n become infinite in equation (3), making use of hypothesis 

2, we see that A = B, and the proof is complete* 

Example A. C—D* con verges* X 
£3=31 
Here = krl and it is clear that Vh tends monotonically 

to zero. 

Example R, 

50 

V , log k 

*=i 

converges. 

Here vk = f(k) where f(x) = x~w log x. Since f'(x) = 
a;-^(l — i log as), it is clear that vke i when k > cs. 
Hj'pothesis 2 is also clearly satisfied. 

Corollary 8. li£„| = \A — Snj 

m 

= | ^ (-W^+i 1,2, 
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For, since A lies between any two consecutive elements of 

l-firt] ““ \A lSn| £ |Sn+l — S„ = yn+1. 

This result enables us to estimate the error when a partial sum is uaoc| 
for the correct value of the aeries (2). It should be observed that 
if the aeries is not alternating or otherwise fails to satisfy the hypotheses 
of Theorem 8, the present estimate of the remainder may not be used 
For example, in the series 

? = , _ 1 _ 1 i 1 , 
5 2 22 + 2s + 2* ~ ’ » 

we have |/Jt| = i! — Si\ = f, and this is not less than the absolute 
value of the first term of the series omitted. If we introduce parentheses 
into the series 

2 2=1_/i + lWi +i\ 
5 V2 27 A2" 2 7 

the estimate again becomes applicable: 

l-i 
o 

< 1 + *■. 
2 r 2i 

EXERCISES (3) 

Test the following series for obsolute and conditional convergence. 

2. 

I 

V _c-1)* 
A V' k 
A-3 

log log k 

(1 - jfc)* 
kk+i ' 

» 

k~2 

6- tw 
ft - 3 

os 

7.V 

(—1)* log jfc 
k log log k 

(-1)* 
log k (log log k)p 

2 

« 

1 

a- °-i 
k “2 t - 

Z/ \/log k 

8. > a*A». 
£ = 

9. Prove Theorems 4* and 5*. Mote that to prove that a series 

diverges it is not enough to show that it fails to converge absolutely. 

10. Give examples to show that neither hypothesis of Leibniz’s 
t heorem may be replaced by vh S 0. 

Bint: Drop parentheses in the aeries m-ti 
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11, Verify Corollary 8 for the geometric series (— 1 < r < 0) by 

actually computing the remainder /?«. 

12, Add the first 10 terms of the following series and show that the 
sum differs from log 2 by less than the 11th term: 

log 2 = 1 — i + £ — i + * ■ * 

13, Use Corollary 8 to prove 

0 < x -r log (1 + r) < ^- 0 < ar < 1 

Verify the result by use of the Maclaurin development of log (l 4- x) with 
the Lagrange remainder. 

§4. Limit Tests 

An exceedingly useful test, which wo shall call the “limit test,” for 
the absolute convergence of infinite series is now developed. Although 
it is perhaps the easiest of all tests to apply, it has been somewhat 
neglected in textbooks. It, is analogous to a very familiar test for the 
convergence of improper integrals. 

4.1 Limit test for convergence 

Theorem 9- 1. lim kpUi = A 
k-*« 

SET 

X 
i 

Uk converges absolutely. 

V > 1 

By hypothesis l we see that 

liin kp\uk\ — \A\. 
k—* W 

Hence, there exists an integer m such that 

< \A\ + 1 
M < (\M + 1 )k~* 

Hence, by Theorem 2, using test series 7b we have 

k = m + I, 

< <*, 

fc«= m 

from which the desired conclusion follows at once. 

Example A. V (fc + 1)M A converges. 

For, taking p = % > i, we have 

r i u v (Id- . lim ukkA = hm - .„•; = L 
a-*. 0 + 1r* — k 
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Example B. ^ ( — l)4 converges absolutely. 

*-1 

For, 

lim nick** = lim { — l)* = 0. 
Vk fc-*» k—+ «« 

4.2 Limit test for divergence 

Theorem 10. 1. lim kuh = A 0 (or ± °o) 
k—+ 

« 

l uk diverges> 

k~i 

The test fails if A — 0, 

Case L A > 0 (or 4- &). Then there exists an integer m mch that 

kuk > 7J- (or I) & — m, m + 1, * * * . 

Hence, by Theorem 3t comparing with the harmonic series, we obtain 

/ Uk = + «, 

A 
from which the desired result follows. 

Case IF. A < 0 (or — qo). In this case the series 

40 

2‘- 
tt*) 

may be treated by Case l. 

To see that the test fails when A = 0, consider the two series 

iL/ k2 < 1 k log k 
k-1 k=2 

For each, ,4 = 0. 

Example C. £ 7 + k><»*«**■ 
i-l 
For, 

lim kuh = lim = - ». 
k—► 50 « • “T I lfe —1 k2 

Example D. Test for convergence the series 

2‘- 
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The results are contained in Figure 20. It indicates 
that the series diverges in quadrants I, II; converges 
absolutely in III, IV. The behavior on the axes is 
also shown. The series converges conditionally for 
0 = 0, — 1 ^ <x < 0. The limits involved when 
using the limit tests arc easily evaluated by inspection 
of the orders of infinity of the various factors. 

cc 

Fig. 20. 

EXERCISES (4) 

Test the following series for convergence by use of the limit tests. 

1. Exercises 1, 2, 3 of §1. 

2. Exercises 4, 5, 6 of §1. 

3. Exercises 1, 2, 3 of §2. 

6 V t-D* . 

hvw=\ 

4 * * 
Jt=i 

DB 

1, ^ ka (log ky. 

k-2 
40 

4 7. ) ka (log kypo*. 

k-'2 
00 

8. ^ (log /c)-1”* * 

k^2 

9. Prove or disprove: \Ukk\ > l, k — 1, 2, ■ * ■ —4 ^ uk 

diverges. 

10. Prove or disprove: f(x) tC; |x/(x)| > 1, x ^ 1 -> ^ f(k) 

*-1 
diverges. 

11. Prove: lim fc(log k)puk ~ Af p > 1 y w < 
km 1 
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12. Prove: lim fc(log k)uk = A ^ 0 ^ «* diverges. 

13. In Exercise 12 show that the test fails if A =0. 

14. Test for convergence the series 

V log (1 + fr-‘) 
L( fnp^nsrr- 
jfc-3 

§5, Uniform Convergence 
Consider a scries of functions 

^ m — I uk(x), 

which we suppose convergent for every point x in the interval a S x £ b. 
This property of convergence might be verified by applying some of the 
earlier tests-for each value of x separately. There is a further type 
oi convergence, known as uniform convergence, which has to do with the 
behavior of the series in the interval a g z g b as a whole. For series 
enjoying this type of convergence it is easier to infer properties, such as 
continuity, of the sum function f{x) from the properties of the separate 
terms* 

5*1 Definition of uniform convergence 

Set 
n 

&<*) = ^ Uk{x). . 
i = 1 

Definition 4. Series (1) converges uniformly to f(x) in the interval 

a = x ^ b i—> 10 an arbitrary t > 0 corresponds an integer m 
independent of x i n a ■& x & b such that when n > m 

^ l/(*) ~ 5ft(ar) I <e aSjfij, 

By the definition of limit, the series (1) converges at a point Xt> if 
to an arbitrary e > 0 corresponds an m such that (2) holds when x is 
replaced by x0. If (l) converges for every we can determine an 
integer m for each x0l but it will change in general as xn changes. If in 
particular it does not change, the series converges uniformly' in the 
interval. In general, m is a function of e and x, 

m = m(e, x). 

But, m = »i(e) <—1 (1) converges uniformly 

Oi. IX §5.1) INFINITE SERIES 253 

Example A. x 2? converges uniformly to y in —a ^ ^ 

0 < a < 1. 
Here 

i « 
sXx) ~ l — x' 

I/M - S.MI - 4^4 S r~, MS «■ 

If e > 0 we have only to choose m so that 

an 
I — a 

< € n > w. 

In fact, we may choose for m any integer greater than 

_ log [(I — a)e] 
log (1/a) 

Clearly it will depend in no way on x. 
m 

Example B. y [kxerkxI - (ft - converges ontheinter- 
k=1 

val 1, but not uniformly. Here 

lim Sn{x) = lim nx<r*x' = 0 0 £ x g 1. 
n—► «> ft—* » 

Suppose the convergence were uniform on 0 ^ r £ 1. 
Then for any t, say e = l, there would exist an integer 

rn such that. 

(3) \f{x) - S«(at)| = axe""1’ <1 n > m. 

But 

(4) Max nxe~nx1 = a/A, 

so that we should have from inequality (3) 

n > m. 

Let n become infinite to obtain a contradiction. 
Graphically, inequality (2) means that the curves y = &,(»), n > m, 

lie between the curves y = f(x) 4* e and y — f(x) — e when a ^ x ^ b. 
In Example B the curves y = S„(x) cannot bo contained, for all large u, 
between the curves y = f(x) ± t in the interval 0 £ x £ 1, even if « 
is large, since the height to which these curves rise increases without 

limit as n becomes infinite* 
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Example 

t-o 
0 x < l 

= ^ ' x — l. 
Since f(x) is discontinuous, it is clear geometrically 
that for every n the continuous curve y = Sn{x) must 
fail to lie between the curves y = f(x) + | in the 
interval 0 ^ i ^ 1. Analytically, we have 

[/(*) “ S»(*)| = xn 0 ^ x < I 
= 0 x = 0. 

If e = i, the inequality 

xn <i 0 ^ x < l 

is false for every fixed n. For, the left-hand side 
approaches 1 as x approaches 1. 

5.2 Weierstrass's Af-test 

We now introduce one of the most useful methods of testing a series 
for uniform convergence. 

Theorem 11. 1. |u*(x)| ^ Mt ■ a%x^b,k = 1, 2, • • ■ 
<o 

2, ^ jtf* < oo 

a? 

^ uu{x) converges uniformly ma|ig5. 

Set 

M = V Mt, Tn = V Mi, f(x) = y uk{x). 
.*-» i-1 k-1 

The latter series clearly converges fora^z^b by Theorems 2 and 7. 
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it+p 

- &>(*)! S £ £ 2 Ml 
Jfc-n+1 fe-rt+X 

s t^p - rn. 
Now let v become infinite: 

|/(x) - &.(*)! S M - T„ a£z£b. 

Given e > 0, we can determine m so that 

(5) M — Tn < t n>m, 

by hypothesis 2. Clearly, m does not depend on x since T„ does not. 

But inequality (5) implies the desired inequality (2). 

Exam pi PLB D. ^ 
cos kx 

ifcs 
t -) 
where R is any number. 

converges uniformly in — R ^ x ^ R, 

Take Mk - k~-. 

5.3 Relation to absolute convergence 
’ if a series converges uniformly by virtue of Theorem 11, it clearly 

converges absolutely. One might be tempted to suppose that all 
uniformly convergent series are absolutely convergent. 1 his is not the 
case. Example C is a series of positive terms. It converges absolutely 

but not uniformly in 0 £ x ^ 1. 

Example E. 

*-1 

converges uniformly but not absolutely 

In the interval 0 £ * ^ 1. At x = 1 this series is 
the familiar alternating series which converges condi¬ 

tionally to log By Corollaiy 8, 

1 
|/C») — &*(*)! - n + 1 n + 1 

0^ x 5 1. 

If e is an arbitrary positive number, we have only to 
choose m as the first integer greater than f 

This example shows the limitations of Theorem 11. 
Even though the series is known to converge uniformly, 
it must be impossible to find the sequence il/„ required 

for the Weierstrass test. 

EXERCISES (5) 

Test the following series for uniform convergence in the intervals indicated. 
*> 

1. ^ (2fc + l)-*4 sin 2kx — * £ x £ r. — IT ^ 2 i r. 
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i* 

2, y * 
k{log k)2 -1 1. 

„ V (-DV** 
Lf Uh - I) 
jt=2 

100. 

TO 

k** I 
-1 £ x S 0. 

n 
»»M*i 

6, > (-1 )*_?- 
Lt 2k + 1 
*=o 

-1 £ x £ 1. 

-AJ £ x £ H. 
n • 

i 

8. y ( 1. 1 2 
£(\x + k x + k -l J 
*“] 

0 % x g 1. 

^ + 2 kx + x + 2) 0 g * 11. 

10. ^ *(1 + xjr* 0 S'* & 1. 

11. In Example 0 show the convergence uniform in 0 g x £ a 
where a < I, 

12. Establish equation (4). 

13. Prove: Max nxe~nxt = nae~wi if (2n)-te < a. 

14. In Example B show that the convergence is uniform in a ^ x ^ 1, 
where a > 0. 
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at each point of that interval. When can we infer the continuity of the 
sum of a convergent series from the continuity of the terms of the scries ? 
One answer is: when the series converges uniform^. This and similar 
applications of uniform convergence will be made in the present section. 

6.1 Continuity of the sum of a series 

Theorem 12. 1. 'fcjt(x) e C 
« 

2- f{x) = ^ M*V) 
it —X 

-^ f{x) zC in a £ $ £ b. 

bet a ^ a S xu + Ax ^ 6, To an arbitrary € > 0 there 
corresponds, by hypothesis 2, an integer m such that 

|f(x<d — jS™(x0)1 < e/3 
(1) I/0& + Ax) — Sm(x$ + Aa?)I < e/3. 

In fact, uniform convergence implies more than this. These inequalities 
would hold if rn were replaced by any larger integer; but we shall make 
no use of the fact. Since Sm(x) eC at xo, there exists a number S such 

that 
|S™{$a) ^ Sm(Xo + Ax)\ < e/3 |Ax| < 5. 

Combining these three inequalities, we obtain 

(2) |/C*o + Ax) - f(x«)| < e |Ax| < 5 

This implies f(x) e C at .r<> Observe where the uniform convergence 
entered the proof. We needed to know that inequality (1) was valid 
for all Ax such that |Ax| < Sf a £ Xa + Ax ^ bt in order to be able to 
draw a like conclusion in inequality (2). 

Example A of §5 illustrates the theorem. The sum of the series, 
1/(1 — x), is continuous for \x\ ^ a, a < 1. That is, 1/(1 — x) e C for 
- 1 < x < 1. Example B of §5 shows that the conditions of Theorem 12 
are not necessary. For, in that example the sum of the series, 0, is 
continuous even though the convergence is noimniform. 

6.2 Integration of series 

Term by term integration of a convergent series of functions is not 
always valid, as we may show by use of Example B, §5. Here 

a ^ x ^ b; k = 1,2, * * - 

uniformly in a g x ^ b 

§6. Applications 

In Example C of §5 each term of the series was continuous. In fact. 
uk(x) £ C*°, — < x < ®, Jfc = 1, 2, * ■ ■ . Yet the sum of the series 
was discontinuous in the interval 0 ^ x £ I, though the series converged 

10 

J^ftydx ^ ^ Jo Mx)dx 
fc-1 J 
« 

A-l 
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It is clear geometrically why this happens. Remember that the curve 
y = Sn(x) rises very high when n is large. It is this fact that enables 
the area under this curve to equal £ - e~n, a number, which approaches 
^ as n becomes infinite, even though each ordinate of the curve approaches 
zero 

Theorem 13. 1. t C 
m 

2. fix) = ^ «*{*) 

a § x £ b; k = 1, 2, * ■ . 

uniformly in a £ z & b 

£f(x)dz = £ f* «»(*)<*» 
Jfc-1 

To an arbitrary « > 0 corresponds an integer m, independent of 
x in a ^ x ^ 6, such that when n > m 

(3) !/(*) - S„(*)i < 6/(& - a) 
r 

Hence, for n > mt we have 

IX mdx S,,(^)dxj ^ l/{®) 5n(i)|rfa: < 

a ^ x g 6. 

That is, 

f f(x)dx = lira f1' Sn(z)dx = lim f° Y uk[x)dx 

fi « 

,!™ I fabMx)dx=l f\t(z)dz. 
k*l k-\ 

Observe that/(a:) c C by Theorem 12 and is hence integrable. Note also 
that we needed uniform convergence to insure that inequality (3) should 
hold for all x in the interval when n > m. 

«9 

Example A. —^ (-z)k uniformly in 0 g * £ A, k < I. 

Hence, 
A * 0 

(4) log 

<b-0 
0 ^ ft < 1. 

In Example E of §5, we showed that series (4) con¬ 
verges uniformly in 0 5 A|l. But we have not 
established equation (4) for h - 1. However, Theo¬ 
rem 12 assures us that the sura of the series must be 
continuous in 0 5 A i 1. But log (1 + A) e C in 
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q g h g l. Hence, equation (4) must also be valid 

at A = 1, 

log 2 = 1 — 4 + -4 

6.3 Differentiation of series 

Term by term differentiation of convergent series is not in general 
valid, even when aQ terms and the sum belong to C1. Even uniform 
convergence of the given series does not validate the process. 

Example B. *.“£(?“ ^Tf) 
nSirSl. 

*«l 
This scries converges uniformly in 0 5 z £ 1. Yet, 

when the series is differentiated, 

* 

l .*-i *•), 
*-i 

we find that its sum is equal to the derivative of x 
in the interval 05r<l only. At x = 1 the sum 

of the series is 0. 

Theorem 14. 1, ttbWtC1 
40 

2. fix) = l ut{x) 
k~\ 

40 

3. £ u'k{x) 

a ^ x ^ b; k = 1, 2, * * ' 

a £ x &fb 

converges uniformly in a £ x £ h 

a-i 
* 

fix) = 2 u'k{x) a S i 5 A. 

k- 1 

Observe that the conclusion includes the fact that fix) iC1 in the 
interval a ^ x £ A. It necessarily must refer only to the existence of 
right-hand and left-hand derivatives at the points a and b, respectively. 

Set 

vix) = £ <(*). 
k-\ 

By Theorem 12 *>(*) tCina 5r 51. By Theorem 13 

f* <t>(x)dx = l [u*(A) — Kb (a)] a g A S b, 

k* i 

j 

and by hypothesis 2 this series can be written as the difference of two 
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convergent series, 

j* <p(x)dx = f(k) - f(a). 

Now differentiation with respect to h gives 

/'(A) = p(&) = ^ «*(A) ' a S h g iJt 
Jfe-1 

This concludes the proof. 

The conditions of the theorem arc frequently abbreviated by the 
statement that “the derived series must converge uniformly/- This 
statement is not quite accurate, for it omits reference to the convergence 
of tht? given series contained in hypothesis 2. That (hypothesis 3 does not 
imply hypothesis 2 is seen by the example uk(x) = 1. 

EXAMPLE C, -1 < x < t. 

(5) 

The derived series 2 kxk~1 

kfQ 
converges uniformly in —a S x ^ a, a < 1, as we see 
by Theorem I lt Mk = kak~l. 
Hence, 

1 

(1 - X)* 2 
jfc- o 

kzt“J — a ^ x ^ a. 

Since any given number x in the interval —1 < x <■ 1 
can be included inside the closed interval — a ^ x S a 
for some a < i 5 equation (5) holds in — 1 < x < 1. It 
can be checked by Taylor's expansion. 

EXERCISES (6) 

Which of the following series can be differentiated term by term in the 
intervals indicated? 

1- Exercise 3, §5. 

2. Exercise 4, §5. 

3. Exercise 8, §5. 

4. 

sc 

(2k + l)-54 sin (2k + l);c -1£*S1. 

-4 g x £ -3. 
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6. Show that /(*) t C* in the interval 1 £ x < » if 
CB 

f(x) - y Vk r+* 

7. Show that the series 

261 

2 
A-0 

may be integrated terra by term from 0 to h, —1 < A < 1, and thus 

verify No. 779, Peirce's Tables. 

8. Prove that 

l=i_i+I_ 
4 3 o 

9. In the proof of Theorem 14 it was tacitly assumed that, when a 
scries converges uniformly in an interval, it does so in any smaller interval, 

prove this fact. 

10. Prove: 1. f(x) = ^ «*(x) 

2. g{x)tC 
» 

—► f(z)g(x) = V g(x)uk(x) 

uniformly in a ^ x % b 

a £ x £ b 

uniformly in a g x £ b. 

i-l 

11. The conclusion of Theorem 13 remains true if & Is replaced by 
y, a < y ^ b. Show that the resulting series is uniformly convergent 

in the interval a £ y ^ b. 

12. In the light of Exercise 11, why does not hypothesis 3 imply 
hvnothesis 2 in Theorem 14? 

§7. Divergent Series 

If a series diverges, it may sometimes be used in computation. Even 
if it converges, its use in computation is an approximation process. 
Instead of the actual sum A of the series, one uses S„, where n is so large 
that 1-4 — S„| is within the limiL of error allowed by the conditions of 
the problem. If the series diverges, it may be possible to use some other 
combination, not <$„, of the first n terras of the scries as an approximation 
to the “sura” of the divergent series. In the present section we make a 
brief study of these “summation” processes. 

7.1 Precaution 

Great care should be exercised in the use of divergent series. One 
must be careful not to carry over the “obvious” properties of convergent 
series to divergent ones. Let us illustrate. 
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Euler attached the value i to the divergent series 

(1) 1 - 1 + I - 1 + • • * . 

LCh. (X §7.S ( 

' 

This value may be arrived at heuristically in many ways. For example 

(2) = 1 -* + *■- • ■ • -i<x<] 

For x = lf the left-hand side has the value £ and the right-hand sid(+ 
becomes series (1). But note that equation (2) is valid only for — 1 ^ 
x < 1. We have treated series (2) like a convergent series at x = l. 

Another way of guessing a “sum3' for series (1) is to set it equal to 
the undetermined constant Al 

A =1 - I + l - 1 - * — 

A — l — — 1H-I — 1+1 — 

Adding these series lerm by term, we get 2A — 1 = 0 or A = + But 
here again we have carried over to divergent series processes which 
are valid for convergent ones. 

Observe that we could get very different results by processes which 
appear very similar. If we set x = 1 in the series 

(3) 

we get 

1 + x 
1 + x + X' 

= 1 — X2 + X3 — X& + X- 

1 = 1-1 + 1-1+ ■ ♦ 

‘1 < X < 1, 

Also, if we insert parentheses in series (1), a process always valid for 
convergent series, we get 

or 
1 - 1 - (1 - 1) - 

0 = (1 - 1) + (1 

(1-1)- 

-!)+•-■ 

Thus, we have obtained the possible “ values” 1, f, 1, 0 for the series 
(1), according as we have chosen one or another of the valid properties 
of convergent series to apply to the divergent one. This should show 
dearly the need for caution. Obviously, we want only one u sumM 
for a series. We must proceed bv definition and not by analogy. 

7.2 Cesaro summabilify 

We now define a process of attaching a sum to a divergent series which 
is variously known as the method of arithmetic means, Cesdroj l-sum- 
mobility, (C,l) —swmmnbility, etc. The meaning of the number 1 will 
appear later. Set 

Sn~%ut' _ k X 
*-] fc-1 
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That is, *S„ is the average of the first n partial sums, and is, as a conse¬ 
quence, the following Unear combination of the first n terms : 

<Tn 20-^) 
uk. 

k-* 

Definition 5. 

(4) 

The series ^ Uk is summable (C,I) to A 

k-*i 

ltm ** = A. 

We also write equation (4) as 

Uk 

i = 1 

Example A. 1-1 
For, 

1 + 1 - 

(0,1). 

(0,1). 

Sn: 

” X iS*: 

1 
** = 2’ 

i, o, i, o, ■ 

1, 1, 2, 2, • 

I ■ s. I) i. 

n + 1 
2 n + 1 

n ~ 1, 2, 

lim &2n — lim <T2lt+i — lim = i. 

(0,1). Example B. # = 1+0— 1 + 1+ 0— 1 + 1+0 

For, 

iSan+l = jSan+a = lj $3rt+3 = n — 0. Ij 

2n + 1 _ 2n + 2 
ffan+l — 3 n + 1 

2 n + 2 
3n + 3 

<r3n+2 3« + 2 

lim trn — S* 

This example shows that tile interpolation of zeros into 

a series may effect its Ces&ro sum. 

m 
Example C. ^ (—l)*fc is not summable (0,1). 

h m I 

For, 
t-2n—1 — ‘a, 

lim o’2u—i = — i. 

hn = 0 n = 1, 2, 
lim <r2n — 0. * - I, 2, * ■ ■ 
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(5) 
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This shows the need for more powerful methods of sum¬ 
mation. If 

iLnl n(n + 1)X 4 ~ A’ 

we say that 
4 

A = 2Uk <c*2)- 
k*>i 

In the ease of Example C, we have 

4 

“i = XC”1)tft CC'2)- 

Thus, a series may fail to he summable by one method 
and be summable by a “stronger" one. 

7,3 Regularity 

In Definition 5 there was no statement that the given series was 
divergent. What will be the Ces&ro sum of a convergent series? We 
shall show that it is the same as the ordinary sum, lim iS„. 

n—► 4 
Definition 6, A method of summaMlity is regular 4—* it sums a 

convergent series to the ordinary sum. 

Theorem 16, Cesdro summabiUty is regular. 

Let 

A = ) Uk = lim S„. 
ic - | u—* m 

We are to prove that on also approaches A. 

Cash 1. A = 0, By hypothesis we know that to an arbitrary e > 0 
corresponds an integer m such that 

Hence, if n > m 

k,| ^ “ |5l + 5* + ■ • • + S„\ + i ||S„+i| +•■•+ Iflyj 

(6) $ \ \Sr + St + * ■ • + 5*1 + i 

(7) flm k« | $. t. 
n~* ® 

We may let n become infinite in inequality (6) since it is valid for n > m* 
Inequality (7) shows that lim v* = 0, 
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Case II, A ^ 0. Here the sequence {Sn — A \f tonda to zero, and 
we may apply Case I to it. Hence! 

n * 

lim - / (5* — A) = lim (<r„ — A) = 0. 
rt—* « U ' / «—► « 

A- l 

7,4 Other methods of summability 

Many other methods of summing a divergent series have been 

devised. We mention only two in passing. The series ) uk is summable 
Jt«Q 

to A by the method of Abet i—► 

lim ) UkXk — A* 
^to ' 

Of course, for the method to be applicable, this power series must converge 
for 0 ^ a; < 1, and the above limit must exist. We have seen by use of 
equation (2) that senes (1) is summable by Abel’s method to the value i- 
AIso, equation (3) shows that the series of Example B is summable by the 
method of Abel to the value f. 

Finally, let us define the method of Holder since it is so closely related 
to that of Geskro, A series is summable (//,1) to the value A i—^ 
lira <rn = A. In other words, (C,l) and (//,1) are the same process. A 

fl—t 4 

series is summable (H ,2) to the value A 4—^ 

n 

Jt=l 

That is, we arc dealing here with the average of the averages. It can 
be shown that (C,2) and (II,2) are equivalent in the sense that any series 
which is summable to .4 by one process is by the other also. Both (C,2) 
and (H,2) can be generalized in the obvious way. 

EXERCISES (7) 

Find the Cesdro sum of those of the following series which are summable 
(C, 1). 

1. 1 -2 + 2 — 24- ■ . 

2. 1 — 1+0+1 — 1+0 + - * - . 

3. 1 — 1 + 2 — 2 + 3 — 3 + • ■ • . 

4. 1+0 — 1 +0+1+0 — 1+ . 
6. 1+Q + 0-1+0 + 0+1+ 
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6. Prove: 1. A = K CC.l) 
Jt — t 

w 

2. B = 
2** (C.l) 

k-1 

-* A + B — Y (Uk CC.l). 
t-i 

7. Prove: A =* ^ Uk (0,1) -► ) Uh = A — Ua (C,I). 
fc- 0 *= 1 

tiO 

Uk (C,l) -► ^ Uk - A + Ho (C, 1). 
i k% 

8. y
 

o
 

£
 

te¬
 

ll 

8 VO 

' Uk (C,l) -> y But = AB CC,l). 
'i *=i 

9. Use Example A and Exercises 7 and 8 to find the (0,1) sum of the 
series in Exercise 1. 

10. Prove : A = (0,1) Iim — = 0. 
n 

Find lini 
k—* w rC 

11, Use Exercise 10 to show that the series of Example C is not 
summable (C,l), 

12* Prove: ^ u\ - A (C, 1) <—K ^ u\ = A (convergent), 
k—t 

« 

13, Prove: V — ,4 (C,2) -> lim n~Htn = 0* 
** n—* 
jt—i 

so to 

14, Prove: ^ = A (C?l) ■-> Y Uk = A (CT2). 
k=l A =I 

16, Prove that a finite number of zeros can be interpolated among 
the terms of an infinite series without altering its (C,l)-sum. 

16- Establish equation (5), 

17, Show that a finite number of parentheses (enclosing two terms), 
but not an infinite number, may be inserted into a series without altering 
its (Cfl)-sum. 

CHAPTER X 

Convergence of Improper Integrals 

§1. Introduction 

In this chapter, we shall discuss definite integrals that are "improper” 
either by virtue of an infinite limit of integration or on account of a dis¬ 
continuity of the integrand between the limits of integration. To show 
why such integrals need special attention consider the integral 

f- dx 
,2 * 

13 

If we try to evaluate this by use of an indefinite integral, as we could do 

if the integrand were continuous, we obtain 

Ip 

s|-i ” 

This is clearly an absurd result, since the integrand is positive. In this 
first section we shall begin with integrals in which one of the limits of 

integration is infinite- 

1.1 Classification of improper integrals 

For convenience, let us divide all improper integrals into four types as 

follows: 
Type 1. J * f(x)dx;f(x) zC} a S x < 00 * 

Type II- * f(x)dx; f{x) z Ct — < x g &• 

Type III, P f(x)dx; f{x) zC,a < x ^ 6, Hm f(x) does not exist. 

Type IV. f'~ f(x)dx]f(x) eC, a £ x < b, lim f{x) does not exist. 

If a limit of integration a + or b — appears, it will be apparent that the 
integral is Improper. However, the signs +, — are not always used, 
so that the integral must sometimes be recognized as improper by the 
discontinuities. Besides, the discontinuity of the integrand may occur 
at an interior point of the interval of integration. For example, the 

integral 
fm dx 

J -® x(x — 1) 

nan be considered as the sum of six other integrals corresponding to 
567 
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the intervals (->»,■ -I), (-1, 0), (0, £), (4, 1), (1, 2), (2, »). The 
types are II, IV, III, IV, III, I, respectively* 

1.2 Type!* Convergence 

The improper integral of Type I resembles in many respects an infinite 
series. It is interesting to consider the analogies between the results of 
Chapter IX and those about to be obtained* The very notation used in 
the two cases emphasizes the similarities: 

J ( )dx corresponds to ^ 
<D 

J K ( )dx corresponds to ^ 
If- rrt 

x corresponds to k 
f{x) corresponds to Uu 

f H 
j f(x)dx corresponds to S* = 

n 

Since the variables x and R vary continuously, whereas the variables 
k and n vary through the integers only, some important differences in 
the two cases may be expected. Tt is j list' on this account that the natural 
analogue of Theorem 1, Chapter IX, is false, as we shall see later. 

Let f(x) t C in the interval a £ x < & and let us define the con¬ 

vergence of the integral 

(1) fo~f(x)dx. 
r 

Definition 1* The integral (1) converges ^—> lim / f(x)dx — A. 
60 Ja 

If lim f'1 f(x)dx = A, then A is the value, of the integral (1). 
R—t m J® 

Definition 2. 

Example A. 

Example B, 

it does not converge. 

% converges and has the value l* For 

The integral (I) diverges 

[*dx 

J i ac: 

L 
lim f = lim — L 

Ji & B-+« \ Kf 

sin x dx diverges* For lira (1 — cos i?) does not 
/?-► 50 

exist. 

Test integral Tj: 

Test integral T2: 

d 

d 

c r 

Fig. 22. 

Fig. 23. 
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The analogue of Theorem 1, Chapter TX would be that when the 
integral (1) converges lim fix) = 0. The following example will show 

this false. Set 
g(x) = 1 

= 0 
0 S l*| £ 1 

1 g |*| < «S 

fix) = y - k\). 

It is easy to see that the graph of fix) in the 
neighborhood of x = n is as indicated in Fig¬ 
ure 24. It is clear that 

n~h n "+F* 

Fig. 24. 

I /(*)«** = £p-r(2)-i. 
h = 2 

Yet f(x) does not tend to zero since/(n) = 1 for n = 2, 3, * * * . 

1.3 Comparison tests 

Theorems 1, 2 of this paragraph correspond, respectively, to Theorems 
2, 3 of Chapter IX. 

Theorem 1* L f(x), g{x) e C 
2. OS fix) S g{x) 

3. “ gix)dx 

a % x < 
a £ x < 

< vc 

Ja * f(x)dx < 

As in the case of series, the symbols u <ootf and “ — & ” may be used 
for “converges” and “diverges,” respectively, only when the integrand 
is positive. If B ik the value of the integral in hypothesis 3, it is clear 

that 

F(R) = j'lf(x)dx £ f*g(x)dx £ B. 

Since FiR) t |, we see that 

lim F(R) = A ^B, 
R—* « 

and the result is proved. 

Theorem 2, 1. f(x)f g(x) e C 
2. 0 S g(x) Z f(x) 

3. * g(%)dx « oo 

-} f * f(x)dx = «* 

a £ x < co 
a ^ x < <=c 
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For, if the latter integral converged* we could use Theorem 1 to 

show that the integral in hypothesis 3 converged. 

Example C. f * x*dx 
J2 V%7 4 1 
For, 

< oc 

0 < 
\ 

Example D. 

V*7 + 1 

By Ta with p = M > b we have our result. 

xHx 

2 g x < 

2 vV + i 
For 

I 

y/x1 + 1 y/x yfi + xr1 

a. 1 
\/x VI + 2“7 

2 £■?< *. 

By T2 with p — i < l, we have our result. 

1 A Absolute convergence 

Theorem 3 of this paragraph corresponds to Theorem 7 of Chapter IX. 

Definition 3, Integral (1) converges absolutely <—> J f(x)[dx 

converges. 

Definition 4. / niegral (l) converges conditionally i—► it comerges, 

hut not absolutely. 

Example E. / m\tl dx converges absolutely, 
J) & 
ForT 

jsin x\ < 1 
**2 t-2 X* x5 

Hence, by Theorem 1 and test-integral Ts with p — 2 

I sin x\ 

xl 
dx < , 

Example F. 
f * sin x 

Jo x 
dx converges conditionally. 

We defer the proof of convergence. We show here 
that 

(2) 
sm x 

- dx = « . 

th. x§i.4) CONVERGENCE OF IMPROPER INTEGRALS 271 

In the interval kir £ x £ (ft + 1)’>'j k = 0, 1, 2. ■ ■ • , 

we have 

Hence, 

|sin x1 
X 

]sin x| 

> *1 
= (ft + IV 

-dr £ .. . 
x (ft + 

i 

h 1)jt J*, 
sin x|rfx 

_ 2 

(ft + !)■■’ 

If rnr ^ li < (n + 1)t, 

fi* 
Jo 

n — 1 

*■***12 ITT 

As R becomes infinite, so does »; and so does the 
right-hand side of inequality (3). This proves (2). 

Theorem 3. I. f(x) tC a = x < “ 

2. Jf \f{x)\dx < « 

_* £ 1 /(x)dx converges. 

Since 
0 £ |%)| - /(*) ^ 2/(x)| a Z x < *, 

we have by Theorem 1 that the integral 

// {|f(*)| -/(*)!* 

converges. If we subtract it from the convergent integral of hypothesis 
2, we get the convergent integral (1), thus completing the proof. 

EXERCISES (1) 

Test the following integrals for convergence. 

J sin x-2 i. 
/. 

4. 

2. 6. 

3. 6. 

1 dx. 

f * cos x 

J z x (log a a) 
: fix. 

•r (log x)e~xdx. 

i 

TTfticA o/ the following integrals converges absolutely? 

f* 2 cos; x - 3 sin x + I ^ g j * /cos ' dj> 
* J0 + x+ l ii V ^ / 
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9. J x22~* ain {2x)dx. 

10. Find the area under the curve y = 1 jx from 1 to «, and the 
volume of revolution obtained by rotating this area about the z-axis. 

11. Prove: 1. fix), g{x)tC a < x < , 

2. lira = A 
jf—i §{x) 

3. \g(x)\dx < w 

-1 Ja S(x) dx converges absolutely, 

12. If g(x) = 1 
= 0 

3D 

f(x) = 2 &(**&* - fcD' 

f{x) is discontinuous* Find the value of 

JQ " /(*) dx. 

13. Solve the same problem for 

fo~p(x)dz. 

14. If $(x) is defined as in Exercise 12 and if 

tc 

f(x) = 2 °^2k + [j[^ - 2/r - 1] 
k-1 

m 

Fix) = V gi2k[x - 2k]), 

J0 f(x)dx = F(x)dx = «:. 

f~ tm ~ F(x)]dx 
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♦show 

Does 

— 1 S x 

i*t 

converge? 

15. Prove: 1. f(x) zC, j a ^ x < « 

2. J^ /(r)dr converges 

-1 lim/(a;) = 0, 
#—► « 

16, Can an improper integral be transformed into a proper integral 
by a change of variable? 

Vlf A
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§2, Type!, Limit Tests 

In this section wc prove two useful limit tests analogous to those of 
Theorems 9 and 10, Chapter IX, for series. 

2.1 Limit test for convergence 

Theorem 4, 1* f(x) zC a £ < « 
2* lim z*f(z) — A p > 1 

X-* 90 

to —i L25 < °° • 

For, hypothesis 2 implies 

lim £l'|/(x)-| = \A\, 

Hence, there exists a number b such that 

£p[/(z)| £ Ml + I . b ^ x < oo. 

Now Theorem 1 and Ts with p > 1 give 

jf \f(x)\dx < «, 

whence the relation (1) follows. 

2.2 Limit test for divergence 

Theorem 6, 1. f(x) tC a S x < oo 
2. lim xf(x) = A 7^ 0 (or = + «) 

X—* » 

-► J f(x) dx diverges. 

The test fails if A = 0, 
Cask L A > 0 (or A = +00)- Then a number 6 exists such that 

(2) */c*) > ^ h ^ x < qc , 

(If A — ± oo f the right-hand side of (2) may bo taken as any number, in 
particular 1*) Now by use of Theorem 2 and T% p = 1, we obtain 

jb ’ f(x)dx = +®, 

whence the desired conclusion follows. 
Cask II* d < 0 (or A = — »), In this case the integral 

Jf [~f(x)}dx 

mav be treated by Case I. 



274 CONVERGENCE OF IMPROPER INTEGRALS |Ch, x 

To show that the test fails if 4 = 0, we exhibit two integrals: 

/,>*■ /.' 
dx 

x log x 

In each case A — 0. 

Example A, L e-1’ dx < oo. 

For, taking p = 2 > 1, 

lim x-f(x) = lim x-e~zt ~ 0. 

B- /.' COS X 
Example B. / —■ =—— dx converges absolutely. 

VI + X* 
Here we cannot take p = %. Any smaller value of 
p > 1 will suffice: 

lim x^fix) = lim 
cos x 

*H(1 + *"»)» 
= 0. 

Example C. i: 
For, 

dx 

\A + 2xi 
= H-*. 

lim xf(x) = lim —= —L ^ 0. 
w—* m ] -f- 2x2 y/2 

f * 7e~* — 1 
Example D. / _.. _ i 

Jo \/l + 2xs 
; dx = — oc , 

For, 

lim xf(x) — lim ^ = — *>. 
»-+ - - ^/2 + 2ra 

Example E 
1 /' 

log X 
: dx 

meaningless 

d I ca 

Fig. 25. 

The diagram means that the integral converges abso¬ 
lutely for 0 < p < 3, diverges elsewhere, except at 
P = 0, where the integral has no meaning. In case 
0 < p < 3, choose g so that p < q < 3. Then 

lim x3/l,f(x) = lim 
log x 

= 0. 
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Since 3/9 > V we may use Theorem 4 to establish 
absolute convergence. If p < 0 or if p £ 3, 

lim xf(x) *■ + », 
DC 

so that the given integral diverges. 

f * (ei/i — i)a A 
Example F. ^ jog (1 + dx 

P 

Fig. 26. 

The diagram means that the integral diverges for 
a _ 2j8 £ 1, converges absolutely elsewhere. To see 

this, write the integrand as follows: 

a 

Since the first two factors tend to unity as x becomes 

infinite, it is easy to evaluate 

lim x’Jix) 
X—* “5 

for p § 1. 

EXERCISES (2) 
Test the following integrals for convergence by use of the limit tests. 

L Exercises 1, 2, 3 of §1. 

2, Exercises 4, 7, 9 of §1. 

// t*e~* (log tydt 

6. j x (log x)Hx. 

6. ^ x (log x)9e'*dx. 

7. x - cos 0 dx. 

8. 

9. 

10. 

k m 1, 2, • 

j " r* log (1 + e-lz,)dt. 

. e^‘ log (1 + e*)dt. 

j r»( l + t)(fdt. 
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11. Prove or disprove: I. f(x) eC; 2, |x/(x)| > 1, * > 1 -+ 
o 

f(x)dx diverges. /, 
12. Prove: 1. f(x) s C, a 5 x < <» ; 2. lim x(log xj'/fx) = A, p > 1 

■I—► * 

-* / < 06 • 

13. Prove: 1. f(x) s C, a £ x < * ; 2. lim x (log x)/(x) = ri *£ 0 

(or ± «j ) -> J f{x)dx diverges. 

14. Devise two examples to show that the test of Exercise 13 fails 
if A = 0. 

16, Devise two examples which can be tested by use of Exercises 12 
and 13 but not by Theorems 4 and 5. 

16, In Example E find the limit of the integral as p —* 0+. 

Hint: If 0 < p < 2' ^ — (i + 2-*)<Vp)-i (i 4. *n tilc 

interval \ ^ x < «. 

§3. Type I. Conditional Convergence 

In this section we develop a result analogous to Leibniz’s Ihcorem 
concerning the convergence of alternating series. In the present case 
a trigonometric factor, such as sin x or cos x, in the integrand takes the 
place of the factor (— I)* in the general term of the alternating series. 

3.1 Integrand with oscillating sign 

Theorem 6. 1. g{x) t C a £ x < « 
2. g(x) e l o x < °° 
3. lim g(x) = 0 

X—* « 

(1) -► r g(x) sin x dx converges. 
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\f* g(x) sin xdx| % g(nir) |sin x\dx = 2g(nw), 

it is clear by hypothesis 3 that the last terra on the right-hand side of 
the equation (2) approaches zero. To prove our result, it will conse¬ 
quently be sufficient to prove that the second term on the right-hand 
side approaches a limit, or that the aeries 

Z ft* s’n x 
Jk — m 

converges. But we shall show that this series satisfies all conditions 
of Theorem 8, Chapter IX. Since sin x does not change sign for far £ 

rl(H 1)», 

Vk = ff{*) sin x dx| = j® ' l,'ff(*)|sm z| dx. 

Because g(x) t J, we have 

g(kir + v) f^+l)w |sin x| dx S ir* £ g(fat) l)* |sin x| dx 

(3) 2g(far) fi vk-i % 2g(far — ir). 

Combining these inequalities, we see that 

0 £ y* £ «*_i ^ 2g(kv — ir). 

Hence, y* e J, and lim vk = 0. This completes the proof. 
k—*■ 

This theorem enables us to exhibit integrals which arc conditionally 
convergent* Example F of §1.4 h a case in point. We have already 
shown that that integral does not converge absolutely. Since 1/zfC 
in 0 $ x < we break the integral into two parts: 

[**E^dx= [l^dx+ 
Jo V J0 X JI X 

In spite of the discontinuity in 1/x the first integral on the right is not 
improper since the integrand approaches 1 as x—*0+, The second 
integral on the right may be tested by Theorem (> with a = 1, g(x) = x~l. 

We observe first that since is nonincreasing and approaches 

zero it is necessarily ^ 0. Let a < mw < nw < ft ^ (n + l)ir, where 

m and n are integers. Then 

n-l 

(2) jR g(x) sin x dx = j™ g(x) sin x dx + ^ + ff(ar) sin x dx 
Jfc«ra 

+ f g(x) sin x dx* 
Jji-r 

Keeping m fixed, we let ft, and hence n, become infinite. Since 

.. 

3.2 Sufficient conditions for conditional convergence 

By the addition of a further hypothesis to those of Theorem 6 we can 
be sure that the integral (1) converges conditionally. 

Corollary 6.1. Hypotheses 1, 2, 3 of Theorem (i 

HO 

4. ^ ff(fcir) = to 

k - m 

J * 0{a:)|sm x\dx * qg. 
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Replace sin x by (sin x\ in equation (2). The, last term on the right 
still approaches zero with B~K But 

Z j2*+I,T0(3O[sm a;|daf = ^ Vt = «> 

k — m k = m 

by virtue of inequality (3), hypothesis 4, and Theorem 2. 
The conditional convergence of Example F, §1,4, is an immediate 

result of Corollary 6.1. 

Corollary 6.2. Hypotheses I, 2, 3 

g(x) sin (ax + i)dxf 

J g(x) eos (ax + b)dx a 3* 0 

converge. 
The proof is made by changing the variable. 
We may also obtain a result analogous to Corollary 8, Chapter IX. 

Corollary 6,3. Hypotheses 1, 2, 3 

4. n an integer > a/ir 

g(x) sin x rfxj g 2g(mr)> 

For, 
*4 

jnr g(x) sinirfi = + ^ (— 1 )*!>*, 

He nee ? we may apply Corollary 8, Chapter IX, to the series on the right 
and make use of inequality (3). 

Example A. sin dx converges conditionally. Set x2 = tf 

2 Jo Vi 

Apply Theorem 6 and Corollary 6.1. with a = l. 
g(t) — Then g(t) t |, p(0 —* 0, and 

w fnw sin x 
2 Jo x 
show later that 

^ g(kw) = oo. 

k= 1 

/ sin x , 
'4 = I —— ax 

Jn* X 

ir f * sin x j 

2 " h — ir~ 

g jL. We siiuli 
mr 

Example B, 
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This admitted, the result follows from Corollary 6.3. 

EXERCISES (3) 

Test the following integrals for absolute and conditional convergence. 

cos x 
i. r „ r* ,■■ ■* 

J o Vs2 + * + i 
cos (1 — 2x) 

2. 

3 

4 

y/x -tyx2 + 1 

sin 2x 
f; 

. f _ 
Jj y/z log (a + 1) 

f" sin i . 
'A * log ** 

■L 

dx. 

dx. 

6. j. ~r+~^ 

y f * __sin x 
" J3 x log x (Log log x)p 

6, [ —^— eos 2x dx. 
is logx 

9, J cos x2 dx. 

dx. 

— 1 
sin x dx. 

' o + t 

10. Discuss the integral 

/: ^(x) cos x dx 

directly without reducing to the integral (1), State and prove results 
analogous to Theorem G, Corollaries 6.1, 6.3. 

11, Illustrate Exercise 10 by taking g(x) = (x + a = 0. 

12. Find a finite bound for the integral 

*s r 
JR 

sin x 
dx 

that will hold for all positive numbers R and S. 

Hint: Write the integral as the sum of three parts as was done in 

e< [nation (2). 

13. Show 
I fa sin x 

I Ju X dx 0 ^ R < oc. 

14. Show that neither hypothesis 2 nor hypothesis 3 may be omitted 
in Theorem 6, 

Hint: Take g(x) = sin x/x. 

§4- Type III 

In integrals of Type III the integrand is continuous at every point 
of the interval of integration (at 6) except at the left-hand end point. 
If the limit of the integrand exists as the variable approaches a, we call 
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the integral proper even though there is a discontinuity at a. For 
example, 

[‘ sin x 

Jo X 
dx 

is proper even though the integrand is not defiued at x = 0. It could 
be defined as 1 at x = 0 so as to make the integrand continuous. Such 
discontinuities are called removable. They have no effect on the behavior 
of an integral. Integrals of Type III could be treated by reducing them 
to Type I by a change of variable. We prefer to treat, them directly. 

4,1 Convergence 

Lct/(x) e C in the interval a < x £ b and let the limit 

(1) lim f{x) 
j*— 

fail to exist. We consider the improper integral 

(2) !^S{x)dx. 

Definition 1*. Thcintcgral (2) converges 4—> lim fb f{x)dx = A, 
*—*0+ 

If lim ja !' f(x)<lx — A, then A is the value of the integral (1), 

Definition 2*. The integral (2) diverges 

Test integral Tf: /: dx 

it does not. converge. 

c . d 
H- 

L+ (;r - ay o' '1 
Fig, 27. 

The diagram indicates that the integral converges in 0 < p < 1, diverges 
in 1 £ p < oo f and is proper in - < p £ 0. The value of the integral 
for — oo < p < 1 is 

fb _*_n„ l> ~ a)"1*1 
J a- 

dx t, 
i / -r; = hm 
U h (£ “ *-o 1 - p 

_ 1 _ (6 - ay-p 
i-pj i-p 

4.2 Comparison tests 

The tests for convergence of integrals of Type III are very similar 
to those of Type 1. We number the theorems so as to emphasize the 
analogy. Wrc assume throughout that the limit (1) does not exist. 
The theorems would be true without this assumption, but the integrals 
would not be improper. 

Theorem 1*. 1. f(x), g{x) tC a < x * b 
2. 0 g f(x) £ g(x) a <x £ I> 

3- fb+ 0(x)dx < ® 

< ®. 

the integral 

a < z £ b 
a < x S b 
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For, if « > 0t fe 

f!+Jix)dx ^ SL*9ix)dx - L+g{x)dx- 
V; f _* o + the integral on the left increases, but remains bounded. Con¬ 

sequently, it approaches a limit. 
Let us give an alternative proof by use of I heorem L We make the 

change of variable 
x =* a + PL 

It is then clear that the integral (2) converges 

(~ f{a + 

converges. We now use Theorem 1, noting that 

0 £ /(o + ^ + *"')*"• 0 < (b - a)“* S « < 

Theorem 2*. 1. fix), g(x) t C 
2. 0 £ g(x) £ f{x) 

3. jb+ g(x)dz = <» 

-► f x f(x)dx = 00 • 
The proof is similar to that of Theorem 2 and is omitted. 

4.3 Absolute convergence 
The definitions for absolute and conditional convergence are obtained 

from Definitions 3 and 4 by changing the limits of integration. 

Theorem 3*. 1. fix) tC a < x = b 

2. r i/oo itfz < * 

_y jb+ f{z)dx converges. 

The proof is thelame as that of Theorem 3 except for a change in the 

limits of integration. 

4.4 Limit tests 
Theorem 4*. 1. fix) e C 

2. lim (x — tO’/OO — A 

o < x £ 6 
0 < p < I 

fa\ m\dx < ». 

For, hypothesis 2 implies the existence of a number c such that 

(x - a)I*|/(x)| £1^1 + 1 ’ o < x £ c < b. 

Then by Theorem 1* and test integral T* with 0 < p < 1, we see that 

/;+ 1/00 |dx < *. 
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It follows that the integral (2) converges absolutely. 

[Cti. X $4.5 

Theorem 5*. I. f(x) e C 

2. lim (x - a)f(x) = A 0 (or ± «) 
a < * S h 

x—ni4- 

Ja+ f{x)dx diverges. 

The lest fails if A = 0. 

The proof is like that of Theorem 5 and is omitted. To show that 
the test fails when A = 0, we may exhibit the two integrals 

< ", 

Example A. 

f1 
Ja+ Vx 

i:m) 
/: dx 

dx 

X log (1/ x) 

p 

= GO . 

H- 

Fig. S3. 

Apply I hcorem 4* with p — Ti when ct ^ Or 

lim Vxf(x) = 0. 
3^0-r 

Wlien the integrand approaches a limit when 
a: —* 0 -f, so that the integral is not improper. 

Example B. f' I’-h’-'dt 
Jo+ 

We have 

c 

Fig. 29. 

lim f(t) = 0 
t—*0+ 

= I 
lim = 1 

o-h 
lim tf(t) = 1^0 
+0-h 

= *-(- CO 

4.5 Oscillating integrands 

Theorem 6*. 

(3) -► 

i* <r(x) t c 
2. g{x){x - a)-1 f 
3. lim y{x){x — a)2 = 0 

g(x) sin converges. 

x > i 

x = 1 
0 < x < 1 

x = 0 

x < 0. 

a < x £ h' 
a < x £ h 

This could be proved directly, but we shall reduce the integral to 
one of Type I and apply Theorem 6. As we saw in §4.2, the integral 
(3) converges 4—► 
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(4) 

converges. But 

f " g(a + sin t dt 

lim |7(a + f1)*-* — lim — a)s = 0. 
t—>+ « + 

jUso, under the transformation x = a + the variable t decreases 
when a; increases. ITcnce, hypothesis 2 is equivalent to 

ff(a + 1 b — a g t < ». 

Consequently, we are in a position to apply Theorem 6 to show that the 

integral (4) converges. 

Example C. r 
Jo+ 

S‘n }/X dx converges conditionally. 

Take ^{a;} = x~& in Theorem 6*. Since 

g(x)x2 = \^xt | 
lim g(x)x1 = 0, 

the convergence of the integral follows. To see that 
the convergence is conditional, make the change of, 
variable x — t~l and apply Corollary 6.1 to the 
integral 

r^.di. 
J1 Vt 

EXERCISES (4) 

Test for convergence the following integrals. 

log x 

l f 
1 dx. 

o+ Vs 

r 
J i+ log x 

[ x [log (1 + x)Ydx. 
J 

x2el/xdx. r 

/,+(iogiog^)dx■ 

f-H 
1. / |Iog 3sja( I + x)&dx., 

■i: 
■/. 

sin (l/x) 
xH log (1 + ar1) 

sin (l/x) 
dx. 

f0+ x log (l/x) log log (l/x) 

9. Discuss absolute convergence of the integrals of Exercises 7 and 8, 

10. Prove Theorem 5* directly and by change of variable. 

11. State and prove for integrals of Type III ft theorem analogous 
to Exercise 11, §4, Chapter IX. 

12. Solve the same problem for Exercise 12* §4t Chapter IX. 
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13, Solve the same problem for Corollary 6A. 

14, Show that Theorem C»* remains true if hypothesis 3 is replaced by 

3L fh y(x)dx converges. 

Hint: Use Exercise 15, §1, 

§5. Combination of Types 

In this section we shall discuss briefly improper integrals of Types II 
and TV and integrals which are made up of combinations of various types. 
Types II and IV could be treated directly by a group of theorems analo¬ 
gous to the first six theorems of the present chapter, but it is usually 
as convenient to reduce these t3fpcs to I and III, respectively, by a 
change of variable* In using the limit tests, however, it is perhaps a 
little quicker to make the appropriate changes in Theorems 4, 5, 4 *, 5*, 

5.1 Type 11 

Here f(x) zC in — < x ^ 6, The integral 

/_6 „ /(*)** 

PbK~t)di 

t. If 

lim = lim f(x)(—x)” = A p > I, 
i—'*4- w X—* — * 

the integral (I) converges absolutely. If 

lim /(—£)( = lim — f(x)x -.4^0 (or ± <»), 
t—'» ~ « 

the integral (1) diverges, 

5.2 Type IV 

Here/Of) z C in a g x < h and lim f(x) does not exist. The integral 
x—— 

(2) j*~ f(z)dx 

becomes 

- «* 

when we set x = b — L The transformation x = — t would have been 
equally good. The integral (2) converges absolutely if 

lim f(b — t)tp = lim (6 — x)p/(aj) = A U < p < U 

becomes 

(1) 
when we set x — — 
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diverges if 

lim f(b - l)t = lim (i> - x)f{x) = A ^ 0 (or ± «)• 
t-*0+ x—b- 

5,3 Summary of fimit tests 

I'or convenience of reference we summarize the limit tests for the 

four types. 

Absolute convergence. 

Type L lim xpf(x) = A 

Type II. 

Type III. 

Type IV. 

Divergence 
Type I. 

Type II. 

Type III. 

Type IV. 

lim 
X—'A + 

lim 

lim (—x)p/(ar) = A 
X—*— ® 

lim (a: — a)pf(x) = A 
x-*±a + 

lim (b — x)pf(x) — A 

lim xf{x) = A ^ 0 (or ± on), 

lim xf(x) =4^0 (or ± °c). 

(x — a)f(x) — A 0 (or ± «°). 

(ib — x)f(x) = A t* 0 (or + »). 

p > 1. 

p > 1. 

0 < p < I. 

0 < p < 1. 

Observe that in the limit tests for convergence the factor preceding 
j[x) is always a positive quantity raised to power p. This fact provides 
a convenient memory rule, for, if the factor were altered to make the 
quantity negative, imaginary numbers might be introduced (p = v, for 

example). 

5.4 Combinations of integrals 

We gave an example in §1 to show that an improper integral may be a 
combination of integrals of various types. It is clear that every integral 
for which the integrand has at most a finite number of discontinuities 
can be decomposed into a finite number of integrals of the four types. 

Definition 6. An integral which is the sum of a finite number of 

improper integrals of Types I, II, III, IV converges 4—> each of these 

integrals converges. 

Definition 6. An integral which is the sum of a finite number of 

improper integrals of Types I, II, III, IV diverges i—$ one or more of 

these integrals diverges. 

In the example of gl the integral diverges since 
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It is dear that in testing such composite improper integrals one should 
look first for a divergent part* 

At first sight it may seem that these definitions of convergence and 
divergence are not the most practical ones* It is conceivable that it 
would be convenient to describe an integral as convergent if it is the sum 
of two parts, the first of which diverges to + t the second to - 00 

A case in point would be the integral 

(1) 

According to Definition fi this integral diverges, even though 

(2) = 0* 

From a certain point of view it might be convenient to say that the area 
under the curve y - \/x from —I to I is zero* On the other hand, 
integral (1) does not enjoy all of the properties of convergent or proper 
integrals* For example, if we deduct from the interval of integration 
the interval (G. 5), the value of the integral becomes — however small 
d may be* This is at odds with our feeling that the value of an integral 
should change continuously as the length of the interval of integration 
does. The limit (2) is sometimes described as the Cauchy^tdm of the 
divergent integral (1). 

Let us arrange our integrals in a sort of descending “social scalen\ 

that is, in the order of decreasing numbers of desirable properties: 

p proper 
ac absolutely convergent 
cc corn! itionally convergent 
d divergent. 

A little consideration will make it clear that if an integral is the sum 
of several others from various levels of this scale, that integral belongs 
to the lowest level of any of its parts* For example, 

p®*- r+ r+ r. 
Ja V# Jo J 2 J4w 

~ ac + p + cc — cc* 

The second equation is meant to be symbolic, but is easily interpreted. 

d . ac fW iV fl~ 
Example A. / I log - ) dx = / + / 

J04* \ ay J0+ Jh 
—h- 

Frg. 30. 

The first of the integrals on the right we discussed as 
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Example A, §4.4. For the second we have the 

diagram d , j ac_f*---a 
For, -1 

Fig. 31. 

lim (1 - xYeS{x) = 1 

lim (1 - *)/(*) = 1^0 
r—*1 — 

= -j- oo 

— 1 < a < 0 

«= -i 

a < -1. 

Combining the two results as explained above, we have 

the final result indicated in Fig. 30. 

Example B. Jq+ t* lc ‘dt 
ca 

Fig. 32. 

The integral is tlie sum of two others corresponding 
to the intervals (0, 1) and (1, *)• The first of these 
was Example B, §4.4. The second converges abso- 

iutely for ah xt since 

lim Pf(t) = G, 
t~t+ * 

EXERCISES (5) 

Test the following integrals, using the symbols p, ac, cc, das indicated in 

ike. text. 

J \x\a dx. 

i:m*- 

5. j |sin x\a y/x dx. 

1. 

2. 

3. 

4. 

6. j log |log x\dx. 

'■/: 
dx 

log log® 

e~Uxdx. 

dx. IK"* s) 

10. /: |sm x\a |coa x\$ dx. 

11. The integral 

j ^tan x dx 

does not come within any of the definitions of convergence <**•»•»» 
thus far given. Why? Introduce reasonable dofimtions, which 

be applicable to this integral. 
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12. Does the divergent integral 

/: x~Hx 

have a Cauchy-value? 
13. Find the Cauchy-value of the divergent integral 

f* dx 

JQ 1 — X 

14. Define the Cauchy-value for a divergent integral 

Illustrate by the integral 
f: 

/_> 

f(x)dx f(x) E C, - *> < x < CO, 

sin x dx. 

§6. Uniform Convergence 

The notion of uniform convergence of improper integrals can be 
introduced by the analogy with infinite series which we set up in §1. 
Let us consider first integrals of Types I, 

(1) ja f(xT i)dt 

Let us suppose that this integral converges for each fixed x in the interval 
A g x g B and has the value F(x). Set 

SB(x) = t)dt. 

Definition 7. The integral (1) converges uniformly to F(x) in the 

interval A ^ x ^ B i—y to an arbitrary e > 0 corresponds a number Q 

independent of x in A ^ x S B such that when R > Qt 

IF(z) - SR(x)\ <6 A g x S B* 

For integrals of Type III, 

(2) F(x) = j'+f(x, t)dt A B, 

set 

Sr(x) — Jtbf(x, t)dt a < r £ b. 

Definition 7*. The integral (2) converges uniformly toF{x) in the interval 

A ^ x B ^i to an arbitrary e > 0 corresponds a number q independent 

of x in A £ x £ B such that when a < r < q 

! F(x) - Sr(x)| < t A Zx £ B. 
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Example A. Ja * e~x,dt converges uniformly to 1/x in the interval 

15x53.. 
For, 

g - s«c*> = S €~* < € R > log 

Example E. xe~xtdt does not converge uniformly in the interval 

OS*gl, though it converges at each point of the 
interval. Here 

F(x) =1 x > 0 

— 0 x = 0. 
Then 

|F(x) - SpXz)\ = <r*« 0<3J|1 

= 0 x = a 

Choose e — If the number Q of Definition 7 
existed, we should have for R > Q 

|F(x) - Ss(x)| = er** < i 0 < x ^ 1. 

This is false, since for every R > 0 

lim g"** — i. 
z-KH- 

6.1 The Weierstrass il/-Test 

Theorem 7. 1. /{x, f) £ C 
2. 
3. 1M 01 ^ 
4. j[" < * 

" /{x, i)di converges uniformly in A £ x ^ B. 

a ^ l < oo ,4 £xg£ 
a ^ 2 < oc 

For, 

|F(x) - jS*(x)[ £ f‘ fix, t)\dt < f~ M{t)dt. 

Since the last integral is independent of x in A and tends to 
zero with 1 //if, the result is immediate. 

Theorem 7*. 1. fix, t)zC 
2. Mf) e C 

3. fix, 0| £ Mi0 

4. < oo 
/o+ 

b<IS!ijASjSB 
a < i £ 6 

— ■) fb fix, t)dt converges uniformly in A x B. 

The proof is omitted. In Example A above we may choose the func¬ 
tion M(t) as e~h In example B we have for a fixed f > 0 
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Since 

Max f{x, t) - —• 
osist te 

L 7- d{ = ec 
0+ te 

the M-test fails. This does not prove nonuniform convergence, 

sin (t/x) 

/o+ y/t 
Example C. f 

J 0+ 
'dt converges uniformly in any interval 

0 < A £ x % B. For, we may take the function M(t) 

of Theorem 7* equal to 

EXERCISES (6) 

Show the folio-wing integrals uniformly comergcnl in the intervals indicated. 

r a 
Jo ** 

dt 

+ t2 
1 £ x £ 2. 

Do in two ways: first by Definition 7, then by Theorem 7. 

(xt) f “ sin (; Ji ? 
f * cos xt 

Jo T+t* 

dt 

dt 

c-^'dt 

6 

-c 

/: 

er^dt 

{log xi)Hdt 

-10 £ x £ 10. 

A £ x £ B. 

A £ x £ 100. 

1 £ x ^ 3. 

7. Prove Theorem 7*. 

8. Give an example of a convergent integral of Type III which does 
not converge uniformly. 

9. Does the integral of Exercise 1 converge uniformly in the interval 
-l £x £ l? 

10. If all conditions of Theorem 7 are satisfied, and if in addition 

M (t) t i , docs the series ^ f(xt k) a £ m 
k - frt 

converge uniformly in A £ x £ if? 

11. Show that 
/■* sraj 

;2 t* 

converges uniformly in £ ^ x £ 1, 
Hint: Use Corollary 6.3, 
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§7. Properties of Proper Intesrals 

In order to make the application of uniform convergence analogous 
to those given for series in §6, Chapter IX, we discuss here first certain 
properties of proper definite integrals. In particular, when the integrand 
contains a parameter, we shall study the continuity and differentiable 
properties of the integral considered as a function of the parameter. 

7.1 Integral as a function of its limits of integration 

Theorem 8. 1. f(x) zC u s j £ |i 

2. F(x) = f*f(t)dt a £ c, x £ 6 

—4 A. F(x) tCl a £ x £b 

B. F'(x) = f(x) a £ x £ b> 

It is understood, of course, that Ff(a) and F'(b) are right-hand and 
left-hand derivatives, respectively. To prove this, form the difference 
quotient 

-Ax-= 5x J*, mdt ° = *°* *" + = b- 

Now apply the mean-value theorem for integrals and let Ax —> 0: 

F(x o + Ax) — F(x o) 
Ax = /(^o + OAx) o < e < i 

^ _ lim F(xn + Ax) — F(x0) , 
t (Xo) = Aj->0----“- - J(Xo). 

* 0+. Since f(x) t C, we 

a £ x £ b 

a £ c, z £ b 

If Xo = a, for example, we must have Ax 
have F'(x) e C or F{x) t CK 

Corollary 8. L /(x) e C 

2. F(x) = J°f(t)dt 

-> F’{x) = -f{x). 

7,2 Integral as a Function of a parameter 

Theorem 9. 1. /(x, l)eC a£*£fc, A£x£/? 

2. F(x) = fjfix, t)dt A 

-» /''(at) tC 

Since /(x, i) £ C in the closed rectangle a £ t £ b, A £ x £ B, it is 
uniformly continuous there. * To an arbitrary c > 0 corresponds a 
number 5 such that if 

A £ Xo £ B, A £ Xe + Ax £ B, \Ax\ < 3, 

• Compare Theorem S, Chapter V. The result given there is for functions of a 
single variablet but an analogous theorem can be proved for functions of any number 
of variables. 
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then for a £ i £ b 

|/(x0 4 Ax, t) — fix0, i)l < e/(b — a). 

< e. 

Hence, for |Ax| < S 

\F(xa + Ax) — F(xo)| g f* |/(x0 + Ax, t) — f(x0) t)\dt 

This completes the proof. 

Corollary 9, Under the conditions of Theorem 9 

lim [b f(x, t)dt = fb Jim f(xt t)dt = P/(xo, t)dt A £ xQ £ B. 
I-4Jo Ja Ja 

That is, it is permissible to take the limit operation under the sign 
of integration. 

Example A . iim r 
1—*0+ J 0 

,dt - ? 
(x + i)! 

The integral is proper for each x > 0. Moreover. 

lim f(x, t) = lim 
s-,0 f *-UH- \X T t) 

= 0 0 <L 

But it is not permissible to take the limit under the 
integral sign. For, 

*. r 
Jo 

X dt ~ lim 
{x + f) X-+Q + x + 1 

= 1, 

But 

f Hm f(x, t)dt — 0, 
J 0 

Of course, fix, i)/C m the square 0^xgl,0g(g 1. 

Theorem 10. 1. fix, t) e C1 

2. Fix) = fix, t)dt 

-► A. Fix) t C1 

B. F’(x) = Ux, m 

A £ x £ B 

A £ x £ B 

A £ x £ B* 

For* 
F{xq + Ar) — F(x 

Ax 
*t=± r 

AX J 0 
[fix0 + Ax, t) - fix0,t)]dt. 

By the law of the mean we obtain 

F(xo + Ax) — Fixo) 

At 
- /> 
= / fiixa + OAx, t)dt 0 < 0 < 1. 

In general, a different value of 9 will he needed for each t; that is, 0 is a 

i 
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function of t, xo, A*. Since /,(x0 + SAx, t)sC in a suitable closed 
rectangle, we may apply Corollary 9 to obtain 

(1) F'ixo) = Urn F(Xo + ^ ~ F(^ - f' M*b t)dt 

Conclusion A follows, since by Theorem 9 the integral (1) is a continuous 

function of Xu. 

7.3 Integrals as composite functions 

Theorem 11. 1. fix, f) e Cl a^t^b,A^x^B 

2. Fix, y, z) = f fix, t)di a g y, z ^ b, A ^ x£ B 

-§ Fi(x, y, z) = fjMx, t)di 

Fzix, y, z) = -fix, y) 
F®(x, y, z) = fix, z) a^y,zSb, ASi| B. 

These results are direct consequences of Theorems 8 and 10 and 

Corollary 8. 
As a consequence of Theorem 11, we may now compute derivatives 

and differentials of a variety of functions defined by integrals. 

Example B. Find G'{x) if G(x) = fix, t)dl. 

If F(x, y, z) is defined as in Theorem 11, we have 

G(x) = Fix, gix), hix)), 

so that 

Example C. 

G'(x) = Ft + F«g' + F-Ji' 

fxix, l)dt - f{x, gixWix) 

A U — 
dx Jxt x 4- t 

[*' dt 

ii* (* + 0s 
2x + 1 3xa + 1 

4 fix, hix))h\x). 

3xa 2x 
x 4 x3 x + x2 

x 4- x1 x 4 a:3 

Here we can check the result directly by performing 
the integration indicated before the differentiation, 

4- U = ~ [log (»+ Xs) - log (X + X>)1 
dx Jx* x + i dx 

2x + 1 _ + 1 
X + X2 x + xa 

Of course, the chief usefulness of the present method 
occurs when the given integral cannot be evaluated in 
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terms of the elementary functions, as in the following 
example. 

Example D. d 
sin xt 

ty 
dt = 

/■log V 

Jsttt X 

Here, the given integral is a function of two variables, 
F(x, y), and 

„ . . cos x sin (x sin x) . flog ,J cos xt , 

F'lx’v)-—+i*. —■* 

sra xt P (r .a _ sin (x log y) flOB • 

~ v’ log a L, 
dF(x, y) = Fi(x, y)dx + F3(x, y)dy. 

dt 

It is interesting to observe that F\(x, y) can be evalu¬ 
ated in terms of the elementary functions even though 
the given integral cannot. 

7.4 Application to Taylor’s formula 

An interesting use of the above theoiy is the establishment of Taylor’s 
formula with exact remainder. * Let f(x) z Cn+i, and set 

- /„' 
Then, by the foregoing theory 

(x - Q" 
»1 

/w-°C0df. 

(2) 
(3) 

o) — 0 fe-0, l, 
R<***(x) = 

n 

n 

Now if we integrate both sides of equation (3) successively, using 
equation (2) to determine the constants of integration, we have 

r{x) = f(x) - ao) - rm - no) ^ ■ 
n 

(4) fix) = Irw ^ + j* 
EXERCISES (7) 

Compute the following derivatives and differentials, 

dt 

dx J _s x2 + l + 1 
(2 ways). 

E See Theorem 11, Chapter I 
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d I -fji (2 ways)* 2. e^dt 
dx X* 

3. -H- f vT+yVdt,£- [ Vl + ^’<8. 
3x yo do 

r(S-„s 

4. d / (xs + ys)dr 
7 ~r It1 

POB lgt+v) sin (x + y) 

J si 

(2 ways)* 

6. d dx. 
I sin (x&r) X d- V 

Suggestion: To avoid confusion, xise some new letter for the integra¬ 

tion variable* 

7. dF(x, y), if 

x=L 
log (r2 + a2 + 3f3) 

f 
dt 

sin rst 

l 
dt. 

dx 

[-* 

dz dz 
dx' % 1 

J* 

fhte,u) 

f J ofaVit) 

dz % *p 

dx dx 1 

e^w’dt - 0. 

/{y, 2, f)d( = 0. 

j_ fix, y, z, f)df = 0 

/ tf(z, 0 = 0- 
J XV 

11. Find 

12. Find 

ty-f{t)dL lim - f’ (x - 
x—*0 / q 

im f - ^ ™ rfC 
^o+ Jo ^ H- f 
lim 

x^0 + 

Can Corollary 9 be applied to this example? 
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13. Find 

14. Find lim 
X—» + 

log 

r as* 

lim sin-3 x I (e*1 + 2)dt. 
z-+0 JO 

l fxe~‘ + 1 

K* h t 
dl 

. [* r* 

L 

+ 2 
di log t 

16. Use equation (4) to show that 

2 

Xk ■ fx 

k\ — e ~ Jn (X - O' 
it 

e‘di. 

16. Use equation (4) to show that 

X*‘-i4_-(„+i)/;(i£L_oi 

Make the change of variable y — (1 — i)“r to reduce this to the usual 
form for the sum of a finite geometric progression. 

§8. Application of Uniform Convergence 

In this section we shall discuss the continuity and differentiability 
properties of a function defined bv an improper integral, obtaining results 
quite analogous to those obtained for series in §6, Chapter IX. As in 
that section, uniform convergence will be the useful took We shall 
discuss only integrals of Type I. The corresponding results for integrals 
of the other types will be evident to the reader. 

8.1 Continuity 

Theorem 12. 1. /(x, l)vC a 

2. jf(xf t)dt converges uniformly to F(x) in A ^ x S B 

-► F(x)*C AgxSB- 

Let e be an arbitrary positive number. Then by hypothesis 2 there 
exists a number R independent of x in A x S B such that 

(1) < € A ^ x < R I jf Six, /)d/j 

Hence, if A ^ ^ S, 

IF(t) - F(a:0)| ^ Jf \f(x, t) - f(xa, t)\dt 4- | f(x, t)dt\ + f(xa, ()dij 

= f.S 1^*' ® 0!* + 2s. 
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Since this inequality holds for all-in the interval A ^ x g B, we may 

let x —> xB. The integral on the right-hand side will approach zero by 

Theorem 9. Hence, 

Km |F(*) - F(xo)l ^ 2e, 

y.nd, since t was arbitrary, this becomes 

1 

and the proof is complete. 

1 f “ 
Example A. = / er 

x J o 

lim F(x) F(x0), 

vtdt is continuous for 0 < x < cc. In 

this case, we have an explicit expression for the value 
of the integral, so that the continuity is easily cheeked. 
But we could obtain the result without evaluating 
the integral. Let Xq be an arbitrary positive number, 
ft can be included in a dosed interval 0 < A g x g B, 
But the given integral converges uniformly there, as 
we saw in Example A, §0, 

Example B, F{x) — xHe ridL 

The integrand is continuous in any finite rectangle. 
Yet F(x)/C. Direct integration gives 

F(x) m 1 x > 0 
F(Q) = 0. 

The convergence is not uniform in any interval con¬ 
taining the origin. 

8.2 Integration 

Theorem 13, 1. /(x, t) e C a S t < 00 ? A ^ x S B 

2. J * f(x} t)dt converges uniformly to F(x) in A ^ x g B 

-» f*F(x)dx = JT" dl ff f(x, t)dx. 

We have in this theorem a criterion for interchanging the order 
of integration in iterated integrals. Since inequality (1) holds for all 
R greater than some number Qt we have 

That is, 

< t (B - A) |/; dx f{$r t)dt 

lim a F(x) - j f(x, t)dt j dx =0 

rs rB rit 

I F(x)dx = Urn / dx j f(x, t)dt 
J A K—k “ J A J11 

R > Q. 
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fR fB 

= lim dl f{x, t)dx 
* « A J A 

= Ja dt fix, t)dt. 

This completes the proof. 

Example C. f --—— dl = log - 
Jo i V 
For, the integral 

-= [ er*< 
x Jo 

0 < p < q. 

converges uniformly for p % x ^ q. Hence, 

10(5 (l)= /o */>* 
ti-rt — 

■ A. 
ro * 

8.3 Differentiation 

Theorem 14. 1, /(x, i) tC1 

2. f(xj /)<ft converges to F(x) A z ^ i? 

3. y /](r, i)eft converges um/ormJ^ in j4 g x ^ /i 

-* F’ix) = f" Mx, t)dt. 

Set 

v(*) = J fi(x, t)dt A £ x £ B. 

By Theorem 12 ^(x) tC in .1 ^ x £ /?, and by Theorem 13 

f* v(x)dx = jT“ [/{A, i) - /(A, 0]<U ,1 g H /f 

= F(fc) - F(A). 

Consequently, we have by Theorem 8 that 

F'{h) = <r{h), 

and this is the result we wished to prove. 

Example D. f ' c-*‘d( = - [ * 
OS Jo jo 

<r*7 d* 0 < x < *. 

For, if xo > 0 choose constants ,4 and B such that 
0 < A < £o < B, Then the integral 

/■ er^dt 

I 
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converges in A S x ^ and 

converges uniformly in A ^ x /J- (Take M(£) — 
e~Att in Theorem 7.) Since both integrals may be 
evaluated in terms of the elementary functions, the 
result may be checked directly. 

EXERCISES (8) 
1, If 

Hx) = jQ ” c-^dt, 

show that F(x) e C in 0 < x < «. 

2. Find F’(x) in Exercise 1. Show F{x) e Cl in 0 < x < «. 

3. Find f* F{x)dx in Exercise 1, 

4. Prove: 1. gix) tC (•$!<« 
2. lim xTg{x) = A for some p £ 0 

3, F(x) = fQ" er**git)dt 

-► Fix) t C” 

5. In Exercise 4 find 

6* Show that the integral 

s f * sin xt 

F{x) ~ Jo ~~rdl 

converges for all x. Show that F(,r)X C at x — 0. 

7. From the equation 

prove 

1 
I + x* 

2x 

(1 +W 

// 

L 
£-* cos xl dl 

> 

£“7 sin ,Tt eft. 

0 < £ < 

0 < £ < CO, 

For what values of x arc these two equations valid? 
8. Prove Theorem 12 in a way analogous to the proof of Theorem ! 2, 

Chapter IX, 

9, Prove a theorem for integrals of Type III analogous to Theorem 

12. 
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10. Solve the same problem for Theorem 13. 

11. Solve the same problem for Theorem 14. 
12. From the equation 

y + 1 
show 

whr‘~~ f!x"°slcdx y > 

13. In Example B, show without the use of Theorem i2 that the 
convergence is not uniform. 

: xvdx V > ~l 

§9. Divergent Integrals 

Just as in the case of infinite scries we may study divergent improper 
integrals, defining a process of summability. We have already done this 
for integrals of a very special type when we introduced the Cauchy- 
value. We wish now to introduce the Cesilro method, or the method 
of arithmetic means. We shall treat integrals of Type I only. 

9.1 Cesaro summability 

I^et f(x) t C for a x < . Consider the integral 

(i) 

Set 

(2) 

f(x)dx. 

S(R) = f*Mdx, HR) - 1^=-a f*S(l)dl. 

Definition 8. The integral (/) is summabte (Ct 1) to A 

lim — A* 
R— » 

We also write equation (2) as 

A = J f(x)dx 

Note that an inversion in the order of iterated integrals gives 

HR) 

Exampi e A. / sin 
Jo 

S(t)dl 

x dx — 1 

f(x)dx. 

For, 

<r(fl) - yl — ^ sin x dx 

= 1 - 
sm K 

(CM 

(CM 
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9.2 Regularity 
We shall show here that the convergence of an integral implies its 

((?, 1)-sununability. 

Theorem 15. A — J 
We have given that 

f(x)dx j(z)dx (C, 1). 

and we wish to prove that 

A - lim 

A = lim S(R), 
R-+» 

j_ r 
- a Ja 

S(x) dx. 
K-® R 

Cask 1. A = 0. Given e > 0; there exists Q such that 

\S(x)\ < « 

Let R > Q■ i hen 

i . m i 

l« 

R 

« j a 

- f — a Ja 
S(x)dx\ 

it — a Jq 

x> Q. 

dx 

+ « 
R - Q 
R — a 

TmT 
R-+ « _i_r R - a Ja 

£?„ R^a [ 

S(x)dx j £ e 

S(x)dx - 0. 

Case IT. A ^ 0. Apply Case I to the function S(x) - A. 

9.3 Other methods of summability 

A method analogous to that of Abel for series is the following. If the 

integral a 

j e-z'f(t)dt 

converges for a; > 0, and if 

lim [ e~‘ 
i—*0^ J o 

'/«) = A, 

then the integral (1) is summnble to the value A. Let us apply tins 
method to the integral of Example A. We have by use ot the indefinite 

integral 

—-— = / «r** sia tdt x > 0. 
1 + 3s Jo 

Since the left-hand side tends to l an x —* 0, we get the same value for 

the divergent integral as before. 
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l. cos 

EXERCISES (9) 

1. J^ cos x dx s* ? 

2* Find the (C,l)-sum of the series 

tr 
k-0 

(C, 1). 

sin x dx. 

3. Same problem for 

/V2 
/' 

rA f(2k + 3)w/2 
cos 'X dx -p y / cos a; dx. 

■W J (2i + l>*/2 
k ■» 0 

at+l)ir/2 

4. Is the following integral sum enable (C,l) 

/’ x sin x dx? 

■L 5. Definition: L f(x)dx = .4 (C,2) •<—» 

2 fR 
lim ^ / (J? - 0*3(0* = A. 

Show that the integral of Exercise 4 is summabte (0,2). To wlmt value? 

jo f(x)dx = A (C,2). 

—► \Rx)Y'dx = A. 

f(x)dx 

6. Prove 

7. Prove 

8. Prove 

f(x)dx = A (C',1) 
■/; 

■f: 
* 

9. Prove: f f(x)dx - A -> 
Jo 

Hint: Integrate by parts to obtain 

\J(x)]2dx = A (C,l) 

f(x)dx = A (<7,1) ■ 

lim 

-A~r. 
f(x)dx (C, 1). 

7(0* = A. 

jn e-*f(t)dt = X jo e~l!S(t)dl x > 0. 

Fii'st take A — 0; break the integral into two parts, the second being 
integrated over the interval where |S(0l < «. 

CHAPTER XI 

The Gamma Function. Evaluation of Definite 

Integrals 

§1. Introduction 

In this chapter wc shall define a function known as “the gamma 
function,” r(x), which has the property that T(n) — (ft — 1)1 for every 
positive integer «. It may be regarded then as a generalization of 
factorial n to apply to values of the variable which are not integers. 
The function is defined in terms of an improper integral. This integral 
cannot be evaluated in terms of the elementary functions, It has great 
importance in analysis and in the applications. As a consequence, it has 

been tabulated and very carefully studied. 
We shall also discuss methods of finding the value of improper 

definite integrals when it is impossible to find an indefinite integral in 
terms of the elementary functions. Certain of these integrals are 
related to r(x) and can be expressed in terms of that function. 

1.1 The gamma function 

(1) Definition 1. T(x) = j~+ trH^dl 0 < x < “• 

If 0 < a: < 1, the integrand becomes infinite as f —> 0+. The integral 
corresponding to the interval (0, 1) is convergent or proper for 0 < x, 
while that corresponding to (1, «:) converges for all x. Hence, r(x) is 

well defined by the integral (1) for x > 0. 

(2) Theorem 1. r(x + 1) — xr(x) 0 < x < “. 

For, integration by parts gives 

fR fI IS i fR 

I erH^dl = - e~'\ + - / (r’Pdi. 
J 4 X |a x J * 

Xow allowing R to become infinite and e to approach 0+ we obtain 

./ Jo i o-h 
-/• 

J 0+ 
er*t*dt x > 0. 

We shall usually abbreviate this sort of calculation as follows 
303 
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L erH^-'dt - - e~k 
o+ * lo+ 

if 
* Ja+ 

rW. 

This equation will have a meaning if at least five of the six limits involved 
■ are known to exist. The sixth will then automatically exist. 

Corollary 1. r(* + p) = (j 4* p — l)(x + p — 2) • • • *r(z) 
x > 0; p = 1, 2, • ■ • . 

Theorem 2. T(n + 1) = nl n = 0, 1, 2, • • * , 

Factorial zero is defined as 1. From Corollary l we have 

T(» + 1) - »ir(i) 

r(l) = f* e-dt = 1.' 

Theorem 3. T(0+) = +*>. 

Bincc the integrand of the integral (1) is positive, we have 

But 

F(x) > [l t*-ler*di > e”1 V l*~ldl - (ear)"1 0 < x < *. 
/O-t* JO-i- 

Tliis inequality establishes the result. 

Theorem 4* T(x) e C 0 < % < 

For, let be an artibrary positive number. Determine A, B so that 
0 < < X* < B. Then the integral 

converges uniformly in A ^ x ^ B (take — ls~l in Theorem 7, 
Chapter X). The integral 

fl e-'t^'dl 
JQ+ 

is either proper (A ^ I) or converges uniformly in A ^ x ^ B; (take 
M(t) — tA~l in Theorem 7*, Chapter X). The continuity of r(x) now 
follows from Theorem 12, Chapter X, and its analogue for integrals of 
Type Ill- 

Theorem 5- lim xT(x) =1. 
JT-* o + 

This follows in an obvious way from Theorems i, 2 (n — 1), and 4, 
Note that Theorem 3 is included in Theorem 5. 

1.2 

(3) 

Extension of definition 

Definition 2. For n = 1, 2, . . . , 

T(x + n) 
T(x) = 

x(x + 1) (x + n — 1) 
“ii < x < — n + 1* 

Ch, XI §1,21 THE GAMMA FUNCTION 305 
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Thus we have defined r (a:) for all x except x — 0, — 1, — 2, • ■ . 
Observe that when n = 1 the right-hand side of (3) depends on the values 
of r(aO in the interval 0 < z < 1. It is clear that T(x) has been defined 
for negative x in such a way that equation (2) will hold for all x. 

Theorem 6. r(rc + 1) = aT(a;) * f* 0, -1, -2, • • •■ i 

From this result it is evident that it is necessary to tabulate the 
function only in an interval of length 1. Tills is done in p. 140 of Peirce's 
Tables, for example. It is easy to plot the curve in character by use of 
Theorems 2 and 3 and from the fact that the curve is convex in every 
interval between two adjacent integers. The latter fact follows from 
the equation 

W T"(x) = (Q ” e-‘f*->(log tm >0 0 < at < oo 

and from Theorem 6. The graph of the function y = r(^) is given 
accurately in Figure 33, 

1.3 Certain constants related to F($) 

We shall show that r(^) = vV. In order to do this, we compute 
first the so-called f'probability in¬ 
tegral,” 

Theorem 7* 

L *'dx - i v^- 

To prove this* consider the 
double integral of e_jS_yt over the 
two circular sectors Dx and Z>3 
and the square S indicated in Fig¬ 
ure 34. Since the integrand is 
positive, we have 

(S) / L<f L<IL 
N ow evaluate these integrals by iteration, the center one in reactangular 
coordinates, the other two in polar coordinates: 

fR /Vs rn ru r 

h Jo dl < Jo r"dx Jo 4 ]„ J„ 

\ (1 - e~K!) < ( f e-o'dx) < ^ (1 - 6-™1). 

Now let R become infinite and obtain 
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(/.’ r‘'ix) 
ir/4, 

whence the desired result follows. 

Theorem 8. r(&) = Vr. 

For, 

e-H-Mt 

e~utdy — a/tt f = yl- 

It is clear from the graph that the curve y = r(z) has a minimum 
in the interval (1, 2). The position of the minimum was computed by 

Gauss and found to be 

X0 - 1.461632H5 

The minimum value of T(ar) in the interval (0, «>) is 

r(.T„) = Min r(i) = .885603 • • • 
0<r< » 

A further fact of interest is the slope of the curve at * = 1. It can be 

shown that 
r<i) = -7, 

where y is Euler’s constant-, defined as follow's: 

Definition 3. 7 

The limit is in the indeterminate form =e — *>. Its existence wall 
be established later. The value of the number has been computed 
by J. C. Adams to 263 places of decimals: 

= .57721, 56649, 01532, 86061, 

1.4 Other expressions for r(x) 

Theorem 9. T(x) = r* [ " c^'t^dt 0 <r,x < «. 

This follows from Definition 1 by the change of variable rt = y. 

It is formula #493 in Peirce's Tables. 

Theorem 10. T(®) = 2 Jq * r«V—>cfc 0 < X < «. * 

Set f1 = y. This is essentially #494. 

EXERCISES (1) 
In the following problems, numerical results should be obtained by use 

of p. 140 of Peirce’s Tables. 
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1. Compute: r(-$), I'd), r(2.135), F(-3,728). 

2. Compute: er‘ yft dt. 

3, Compute: 1' e~H y/p dt. 

4, Compute: / e~“tr*-adt. 
to+ 

6, Compute: j e~‘7 Vt dt. 

6. lim {1 — cos z)wr(a:) =■ ? 
X-.0+ 

1-.0 + 
[* lain 

Jo t 

2t\ 
dt = ? 

10. lim *n+ir(a:)r(x — 1) 
x—fO 

F(a: - n) = ? 

11, Prove: V(x) = J ^log-^ dt 

12, Prove: #515, #516, #517, #518 (Peirce* s Tables). 

13* Prove: #519 (frt and n are not necessarily integers), 

14, Compute: / - r--~X:Y=r^' 
Jo+ VaMog (1/x) 

16, Prove equation (4), 

0 < x < QC , 

16, Compute 

17, Prove 

■r 
J(H 

jatioi 

■i: 
:r(n+0 

(x/log x)Hdx. 

(2n)! Vt 
4 *nl 

18, Prove: F(x) t C°° 

n = 0, 1, 2, * — , 

0 < X < oc , 

§2, The Beta Function 

In this section we shall introduce a useful function of two variables 
known as "the beta function.” Its usefulness is considerably over¬ 
shadowed by that of T{x). In fact, we shall show that it can be evaluated 
in terms of the latter function. As a consequence, it would be unneces¬ 
sary to introduce it as a new function. Since it occurs so frequently in 
analysis, a special designation for it is accepted. 

2.1 Definition and convergence 

(1) Definition 4, B(xt y) = (l F”l(l — t)^ldt 0 < x, y < 
/0T 

To show that the integral converges for 0 < xt y < &, we break 
it into two parts: 

(2) B(x, y) = t*-{\ ~ f—HI “ tjr-'dt. 
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The first integral on the right clearly diverges for x ^ 0, converges for 
0 < x < I, and is proper for 1 S x < *>, no matter what the value 
of y may be. If we set 1 — y 
l = Uj we have 

j'~ - t)*~'dt = 

jT* u*-' (1 - u)^'du, 

so that the discussion of the 
second integral on the right of 
equation (2) is reduced to that 
of the first. The results for 
B(x, y) are indicated in Fig¬ 

ure 35. 

2.2 Other integral expressions 

Theorem 11, B(xf y) = B(yt x) 0 < Xj y < . 

This follows by the change of variable 1 — t — u in equation (1), 
fx/2- 

(sin i)2r”1 (cos t)**-ldt 
ro+ 

0 < x, y < *>. 
To prove this* set i — sin2 y in the integral (1). 

Theorem 12, B(x 

Theorem 13. B(x. ,y)= ( 
Jo 0+ (i + ty* 

dt 0 < x, y < °c. 

Here the change of variable t = u(l + u)-1 suffices. This result is 

#482 of Peirce’s Tables. 

Example A. 
/. 

i 
0 (1 + t)7 ^ m 60 

By Theorem 13 the value of this integral is B(4, 3). 
Hut, when x and y are positive integers, B{x, y) can 
be evaluated by use of the binomial expansion. 

B{4 

2.3 Relation to P(x) 

, 3) - [' t®(1 - tT-dt = [' (t»- 2l* -h 
Jo Jo 

t*)dt 

1 _ 3 1 J 
4 5 + 6 60 

Theorem 14. B{x, y) = 0 < x, y < oo, 

We give a proof first when x and y are positive integers. As was 
evident in Example A above, the computation of B(x? y) is particularly 
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simple in this case. If f(m) is a function of the integer m, we define a 
difference operator A upon it: 

A/(m) = f(m + 1) - f{m). 

For example, if m = 1, 2, 3, • • • 

_1 _ 1 _ _1 = -1 
m m + 1 m m(nt + 1) 

4,i = A -1 __1_ 
ni m(m + 1) 

1 

(3) A" — = A (A”-1-) = 
m \ m/ 

(ro + l)(m + 2) tn(m + 1) 
_2! 
m(m + l)(m + 2} 

( —l)"nl 
m(wi 4* 1) + n) » = 1. 2, 

Observe the analogy between A/(wi) and ~ f(x), and specifically between 

(s)and ,£■ C) (txn vry 
Now it is clear by direct integration that 

and that 

1 f1 — = / tm~ldt m = 1, 2, 
to Jo 

a — = f (r - r-')di — f r~l (l - ()<*( 
TO J 0 JO 

/: A"-1 — = (-I)""1 
m 

Hence, by equation (3) 

tr~l-(1 - t)n~ldt - /; 

r-i(l _ 

(n - I)! 
m(m + 1) ■ - ■ (m + n — l) 

_ (n — 1)1 (m —Jl) t  r(?n)r(n) 
~~ (m + n — 1)1 ~~ V(m -+- n) 

mf n = if 2, « * ■ . 
This completes the proof when x — m, y — n, 

When x and 2/ arc arbitrary positive numbers, the proof proceeds 
as follows* Form the double integral of the non-negative function 

over the three regions Dh D2, and S of Figure 34. Now, 

however, t and u are the variables; x and y$ positive constants. We have 
relation (5) of §1.3 as before. Again we evaluate the central double 
integral by iteration in rectangular coordinates; the other two, in polar 
coordinates: 

Jj/2 cos8*-1 0 sin51''1 0 do J* er^r^^dr < t^'e^'dl JJ w5*'-1 er^'du. 

< cos 21—1 6 siniir~1 0 dO e~rtrir+iv~ldr. 
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Now, if we let It become infinite and use Theorems 10 and 12, we obtain 

\ B(y, x) g T(x + jf) - 0 < x, y < * . 

This completes the proof of the theorem. Note how Theorem 14 reveals 
the symmetry between x and y which was proved in Theorem 11. 

2.4 Wallis's product 

As an application of the above results, let us establish an infinite 
product for x/2 known as “Wallis’s product.” 

2k 2k Thpnrpm1fi 7T _ 224466 
Theorem 16. 2 - ^3557 2/; - 1 2k + 1 

By this is meant that if P* is the product of the first n factors on the 
right-hand side, 

T 
lim Pn = 

By Theorems 12 and 14 

1; sin5" xdx = 
r(n + j) 

2(»!) 

(4) J’'“ SW« . dx = 

Hence, the quotient of these two integrals is 

n - 0, 1, 

n = 0, l, 

(5) 

fw/2 

h " 
sin2* x dx 

/w/2 
sin*" +1 x dx 

= T(n + b)Hn + I) 
nl nl 

2n + 1 2n — 1 2 n — 1 
2 n 

1_ 7r 

/\2 

2 n 2n — 2 
3 3 i 7T 
4222 

We shad now show that the left-hand side of equation (5) approaches 
l as n —+ «? . By equation (4) formed for n and for n — 1 we have 

(6) 
fr/2 2 n [*n 
/ sin^^x dx = ~ - I sin2 

Jo 2 n + 1 Jo 
x dx. 

Since 0 ^ sin x ^ 1 in the interval (0, ir/2), we have 

fr/2 

0<io 
sin 2n4’1 xdx < 

fr/2 

Jo ' 
sin2n x dx < 

f*/2 

Jo 
sin x dx. 

Dividing this inequality by the first of its integrals and allowing n 
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to become infinite, we liavc by equation (6) that the left-hand side of 
equation (5) approaches 1. 
Hence, 
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0 < x, y < oc. 

Also 

lim PSn = -- 
ft—► *6 " 

lim P,„+, - Bm P„ - J 

and the proof is complete, 

(nQf 
Corollary 15, lim - v?. 

(2n)! Vn 

To prove this, multiply and divide the right-hand side of the equation 

2 2 2n 2n 
/'sn J 3 

2« — 1 2n + 1 

by 2 • 2 . . . 2n • 2n, thus introducing factorials in the denominator. 
If then factors 2 are segregated in the numerator, the result becomes 
apparent. 

EXERCISES (2) 

1. Compute: J (3(1 — t)zdt 

2. Compute: / -^((1 — t) dt. 
Jo 

3. Compute: ^ dt. 

C*/2- 

4. Compute: J Vtan~xdx. 

fr/2 

6. Compute: I (sin 2x)^dx. 

6. Compute: / —■=—-di. J0+ Vi(i + t) 

Compute: jffjp 

(2 ways). 

8. Compute: 
■L 

dt 

to (i + ty Vi + (l/o 

/■*/a- 
9. Compute: / (sin 2x)2!~1dt 

J o+ 

(2 ways). 

0 < t < <*>. 
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10. Compute: t**1 (log t)(l — C]v~ldt.. 

Details involving uniform convergence may be omitted. 

11. Prove: B(x, a:) = 21~*zB(x, £) 0 < x < 

fH 
Hint: B(x, x) = 2 I (t — ti)J-ldt. Set i — t* = u. 

Jo 

12. Prove: Vrr(2*) = 2**->r(»)r(* + i) 0 < x < °°. 

3 

13. Show by direct computation that ^ (— 1)* 

*To 
Check by use of B(6, 4). 

\kjk + s 
r(r>)r(4). 

r(io) 

14, Prove: Y (-«*(?) ‘ r(jr(”L 
\k/ m -f- k + 1 T(m + n + 1) 

*-o 
mt n = 1, 2, • ■ * . 

15, Complete the proof of Corollary 15. 

16, Try Wallis's product on a slide rule. 

17, Find the area inside the curve 
_j^ yH — \m 

§3. Evaluation of Definite Integrals 

The values of many definite integrals can be obtained even when 
there exists no corresponding indefinite integral in terms of the elementary 
functions. Great ingenuity is frequently required, each integral demand¬ 
ing some special device. Certain general methods can be described, 
however, and we illustrate them here by examples, 

3.1 Differentiation with respect to a parameter 

Example A. }(x) - j cos xi di —<&<%<*> + 

The integral converges absolutely for all x. Then 

(D m - - r sin xi dt 

by Theorem 14, Chapter X. Integration by parts 
gives 

x 
fix) --*/■ 

2 Jo e-*1 cos xtdt = — -nfix). 
o * 

Integrating this differential equation, we obtain 

fix) = C er**. 



314 THE GAMMA FUNCTION ich* xi §3, 

To determine the constant of integration, set x = 
and use Theorem 7: T 

/. 
e-*1 cos ar*v«t 

This is essentially #508, Peirce's Tables. 

Example B. /(*) ■X 1 

(2) m = -at Jn' 

— < 2T < ee, 

Assume first that a; > 0, and make the substitution 
* = lu: 

/'(*) = ~2L 
c-v'-^^du = -2/C*) 0 < * < co. 

Integrating this differential equation, we have 

/(*) = Cer-Z 0 < x < «, 

To determine the constant of integration C let * —* 0+. 
We know that /(*) is continuous at * = 0, since the 
given integral is obviously uniformly convergent in 
any finite interval. Clearly C = vV/2. Finally, 
observing that /( —z) = /(*), we obtain 

e dl — e-2'^ — 00 < x < «, 
fO 2 

This is #495, Peirce’s Tables. 

3.2 Use of special Laplace transforms 

A Laplace transform is an integral of the form 

L 

(3) f(z) -/> <p(t)dl, 

It may be regarded as an operation which transforms one function* 
into another. For example, if ¥*(£) — tn/n\, we see by Theorem 9 

that f(x) — As another example, let us obtain the Laplace 
transform of &(£) - sin at. By use of the indefinite integral or by two 
integrations by parts, we obtain 

/; ~zl sin at dl = 
oa + x% 

— on < a < «>,0<*< x ■ 

In like manner, 

L e~xt cos af dt — 5 
o a2 -j- *2 

— °s < a < <», 0 < * < 

These are #507 and #506, respectively. 
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If a definite integral includes as a factor of the integrand a power f " 
or a quotient a/(a2 + « or (/(«• + fa), the value of the integral can 
■sometimes be obtained by expressing that factor itself us the integral (3) 

and then interchanging the order of integration. 

_ f " sin x , 
Example C, ~^dx " 2 

For, we have 

j ?!E_f dx ~ J sin x dx e^dt 

- //di /„" e~r' sin * of*. 

By #507 

/." nr* ” /o" n + t- 
dl = & 

The justification of the change in the order of integra¬ 
tion is here somewhat more difficult than in previous 

examples and is omitted. 

3.3 The method of infinite series 
In some cases it is useful to expand the integral in infinite series and 

to integrate the series term by term. The following series will be found 

useful; the sums given will be verified later. 

II = i + -L + ± + 
6 1 ^ 2s ^ 32 

1 . 1 IT _ l illX 
24 ” 2* ^ 42 6s T 

£! = i+ -L + -+ • 
8 1 + 32 5s T 

For, 

_ r1 log * . _ _ 
Example D. Jq+ y—x dx - - j■ 

r, 

ise* = y *Mog* 
1 — * L4 

t-o 

A- = 0 

by #519* To justify the term-by-term integration, 

it will be sufficient to show that 

i 

(4) lira 
P x"+1log 

Jo+ 1 ” * 
'dx = 0; 
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(5) 

ICh, XI §3.3 

as we see by use of the remainder of a geometric series 
Since 

we have 

Max 
x log x\ 
i 

1 XB+t tog z 

0+ I — X 
dx «/: 

= 1, 

xndx = 
\ 

n + I 

whence equation (4) follows immediately. 

EXERCISES (3) 
In the following exercises, details involving uniform convergence may be 

omitted unless otherwise stated. The numbers refer to Peirce*s Tables. 

1. Prove #484; m is not necessarily an integer* 

2* Prove #485. 

3. Prove #486 (2 ways). 
Suggestion: (a) Integrate by parts; (b) use the method of §3.2, 

4. Prove #487* Assume #49 L 

5* Prove #490, 
Hint: Use the method of §3.2* Note that the resulting integral is 

the derivative of the original integral except for sign* 

6. Prove #491, 

Hint: The method of §3.2 leads to the integral f * (t + t2)-H-^dL 

This may be evaluated by partial fractions after the substitution l = i/1. 

7, Prove #498; n is any number not 0, is the formula correct for 
n < 0? 

Hint: Set e,IJ - L 

8* Prove #499, Assume #51L 

9. Prove #510 and #511. 

10. Prove #512. 

11* Prove #533. Assume #521. 

12* Prove #521* 
Hint: Add the two integrals; then set 2# = L 

13* Prove #522. 

Hint: Vi rite j0 — JQ + Jr/2l set ir -r x — t in the second integral. 

14* jf er^tr1 sin at dt = ? 

Hint: Differentiate with respect to x or with respect to a. 

15* Give details in the proof of equation (1)* 

16, Solve the same problem for equation (2)* 

17. Solve the same problem for equation (5). 
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§4, Stirling's Formula 

In this section we shall obtain an estimate of the rate at which nl 
becomes infinite with n. Observe that when n is large it is extremely 
difficult to compute n!, even with the help of logarithms. For example, 
if one wished to determine the number of possible shuffles of an ordinary 
deck of cards, 52!, one's task would bo time consuming. We shall show 
that in a certain precise sense (n/e)n /%rn is a good approximation for 
n\ when n is large* The value of this function is very easily computed 

The equation 

= 1 

is known as “Stirling's formula.1' 

4*1 Preliminary results 

For greater clarity in the proof of equation (1), we introduce several 

simple lemmas. 

Lemma 16,1* log ^ ^ | j n ~ 1, 2, * • * . 

This is clear from Figure 36. 

for any n if logarithm tables are available* 

/ .aJfc / n. / O-, % \ 

y 

Since the curve y — If x is convex, the area under the curve from x = n 
to x = n + 1 is greater than the area of the trapezoid bounded by those 
two ordinates, the x-axis, and the tangent to the curve at the point 

The area of a trapezoid is equal to the product of the length of the 
median by the length of the base. 
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Lemma 16,2, L an = 
nl 

(n/e)n y/n 
-¥ lim an exists« 

ft— 

Note first that the sequence \an\ f t j. For, 

since by Lemma 16.1 

(l + l) 
<*» = \ n/ > l 

Un+l e 

(» + 0106 (J + ;) > L 

Since an > 0 for all n, the proof is complete. 

n - 1, 2, 

Lemma 16,3. lira an > 0. 

To prove this, observe that the areas of the circumscribed trapezoids 
and the two rectangles at the ends is greater than the area under the 

y 

curve in Figure 37. The altitudes of the two rectangles at the ends of 
the figure are 2 and log n; {note that 2 > log 1.5). The tops of the 
trapezoids are segments of tangents to the curve at points with integral 
abscissas and are terminated by the lines x = k + 4, k = 1, 2, * * - , 
n — L it is unessential to the argument that these segments do not 
form a continuous broken fine. The area of the trapezoids and the two 
rectangles is 

1 + log 2 + log 3 + ■ * - + log (n ■*- 1) + i log n 
— 1 -j- log nl — log y/n* 

The area under the curve is 

log x dx “ n log n — n + 1 = log (n/e)n + 1. 

CK, XI §4.21 

Hence, 

Consequently, 
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"*(;)■<108 ^ 
(»/e)" y/n 

nl 

On > 1, lim a* & 1. 

319 

n = 1, 2, 

\Ve have proved more than stated. It is only the nonvanishing of the 

limit which is needed. 

4.2 Proof of Stirling’s formula 

Theorem 16, lim 
n—* * 

(n/e)n y/%rn 
nl 

- 1. 

We need only show that 

lim an — r — y/%r. 
ft—# *5 

We use Corollary 15 to evaluate r. The function of n appearing in 
Corollary 15 can be rewritten in terms of on as follows: 

(2) (2n) l Vn a2„ y/\2 

As n becomes infinite, this quotient approaches y/rr on the one hand and 
t-/(t y/2) on the other. Hence, r = y/2rr, and the proof is complete. 

Observe where Lemma 1(1.3 enters the proof. In taking the limit 
in equation (2), we use the fact that the limit of a quotient is the quotient 
of the limits, provided the quotient of the denominator is not zero. Suppose 
we neglect the latter proviso in the following example. Set a, = e~» and 

r = lim a*. 

Then 

Rut 

and 

a~ i- 
lim — = — = t. 

II—# *e UUn r 

a; r (e~n)2 . 
lim -*■ = km sr = 1, 

ft—# m WSn ft—* « v 

r = lim e~" = 0, 
* 

so that we have “proved” that 1 = 0. 

, (2nl , 
Example A. lim = + “ • 

For, 

.. (2 n)!eJ" .. { 

w ‘.'™ I 
<2n11 ,_1 VSt - +». 

(2n)ine“*n yf 4mt) 
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Example B, 

Example C. 

— --- lO*. XI {4 

In calculating limits involving factorials, one should not 
indiscriminately replace n\ by (n/c)» \/^m; rather 
the quotient on should be introduced. See Exercise 10 

T 
(n + p) I 

7l! 

The symbol 

' ?ip 

We say that an ~ bn? n —> go 3 

*00; p ■= ii 2, • • *, 

is here read 11 is asymptotic to,*' 
lim (a«fbn) = ]. 

We can prove this result in two ways* By Stirling’s 
formula 

lim = lim 
nln^ 

(w+p)l 
(n + Vy+T>er'-? V2v(n + p) 

nner’‘ \/2rn (1 + (p/n))"+p+^ _ j 
n! e” 

Each of the three quotients on the right clearly 
approaches 1. On the other hand, 

and each of the p factors on the right approaches I as 
ft —> 00 . 

lim - \^nl — -* 
it —f co 6 

By Stirling’s formula, 

lim = lim ( n! 
1/(2*) | 

e 

Assuming that the limit exists, wc can check its value 
by use of the series 

m 

l 
n*=l 

ni 
“ xn 
nn 

By the ratio test, it converges for \x\ < e and diverges 
for |a;| > e: 

Jinl (^Tl)"+V! W = (X + n) 
But by the root test we have, if the required limit is 
r, that 

Um = I1!7'- \ ft 
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Hence, r must be e~‘ to conform with the known 
convergence facts. 

4,3 Existence of Euler's constant 

A result not unrelated to the foregoing consideration is the following. 

Theorem 17. 1. g(x) e C, j. 1 ^ x < «= 
2. g(x) g 0 1 g x < “ 

n 

•St [2 90) — f* g(z)dx] exists. 
4 =1 

For, by hypothesis 1, 

(3) g{k) £ f*_t g(x)dx g g(k - 1) k = 2,3, 

n— I 

(4) 

Set 

2 9W S f*9<fl)d* £ ^ g(-k)‘ 
4=2 4= 1 

Cn = y ff(A0f" g(x)dx n = 1, 2, ■ * • . 
4 = 1 

Then by inequalities (4) 

0 g ?(») gC,S sr(l). 

Moreover, | C„} f e J., since by inequalities (3) 

Cn - CT„-i = ff(n-) — f’ g{x)dx ?S 0. 

Since the sequence [<?„}* is non-negative and nonincreasing, lim Cn 
n—+ *o 

exists. 

Example D. lim 
n—> ro (Si'+s) exists. 

The result is obvious here since the form is not 
indeterminate. In fact, we know from other con¬ 
siderations that the limit is tt*/6} but the existence 
of the limit follows from Theorem 3 7 if g(x) = x a. 
This example shows that the theorem is of interest 
only if 

j“ g(x)dx = «s. 

Example E. Euler’s constant exists. Take g(x) = ar1. Then 

fc = 1 
exists. 
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EXERCISES (4) 

1. Compute o„, §4.1, for n = 2 and for n = 10. 

2. Compute («/«)" V'2im for n - 52. • 

3. Prove equation (2). 

4. lira tJ/tU = ? 
n—» » 

5. lim (itl) */<**«*> = ? 
ft—m 

6. lim (- log n! — log 74 j — ? 
n—* ■> / 

7-0~? 

9- (3») ~? ^ 

10. It can be proved that {a,,/ yf%t) — \ ^ -rjp> n —► ec. Assuming 

(n-* co, p = l, 2, ■ ■ ■ ). 

(n—> cc). 

(n -► »), 

_ . . . « _i w 

!2?i 

this, prove 

lim (an/\^%r)n = \/e. 

This example shows that it is not always legitimate to replace nl by 
(n/e)n\/2irn in the calculation of limits. 

11. Prove that the following limit exists: 

Si (4 nki ~ lo* l0« “)■ 
k-2 

12, Obtain a result similar to that of Exercise 11 involving the func¬ 
tion log log log ft, 

13, Prove by use of inequalities (4) that 

_L^V _ JL_ 5± +_1_ 
log 2 - Lf A (log A)! " log 2 T 2 (log 2)2 

k~2 

14, Prove: Jim 
n—* « Un 

= A lim ^1 = .4. 
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(,A - < MC-A + O' 

and then apply Hin and lim. 
p— « p-* * 

16. Prove that the converse of the result of Exercise 14 is not true. 

Hint: Take Us, = uan^i = 

16. Use Exercise 14 to evaluate 

lim {2n)l/fl. 

Hint: Take the fa + p)ift root of each term of the inequalities 



CHAPTER XII 

Fourier Series 

§1. Introduction 

In this chapter we shall be discussing series of the form 

(1) .-t t cos kx + Bt sin kx. 

We shall be interested particularly in discussing what functions f(x) 
can be expressed as the sum of such a series. Scries of this type occur 
very frequently in the problems of mathematical physics. They were 
applied by Fourier to the study of heat conduction and, as a consequence, 
certain of the series (1) are known as “Fourier series.” We shall study 
in some detail one physical application of Fourier series: the problem of a 
vibrating string. Finally, we shall give a brief discussion of the Fourier 
integral, an integral representation of a function, analogous to the series 
above. 

1.1 Definitions 

Definition 1. The series (1) is a trigonometric series. 

Definition 2. fhe series 

(2) Y + cos + bk sin kx 

k?i 

is the Fourier series of the function f{x) 

(3) 
au 

h -\L 

fix) cos kx dx 

fix) sin kx dx 

A = 0, I, 2, * * * 

A = 1, 2, • ■ * . 

Example A. Let fix) = ^ when 0 < x x, fix) = — ~ when 

-rSiSO. 

Then 

a* = 0 k = 0, 1, 2, • ■ * 

if*. 1 
bk = g f sin kx dx = ^7 [ I — cos for] 

k = 1, 2, ■ • • . 
324 
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Hence, the Fourier series for this function/(x) is 

. sin 3x . sin 5x , 
sin x + —g-1-g-r * • ■ • 

Observe that in the definition of a Fourier series no 
mention of convergence, much less of the sum of the 
series, is made. A Fourier series is a trigonometric 
series whose coefficients bear a definite relation (3) 

to some function fix). 

Example B. 
sin kx 
log k 

is a trigonometric series which is not a 

Fourier series. It can be shown that there is uo func¬ 
tion fix) related to the coefficients by equations (3). 
The series converges for all x. 

1.2 Orthogonality relation 

We recall that two vectors / and g with components/* and gk,k = \. 

2, 3, are orthogonal if, and only if, 

3 

(/Iff) = ^ A?* = 
r-1 

that they are of unit length if, and only if, 
# 

3 * 
(/i/) = y # = 1, (ffiff) -1 si -1. 

*-1 *-1 

These notions could be extended to a space of n dimensions by extending 
the above sums over n rather than 3 terms. It is possible to conceive 
of a function fix) as a vector with infinitely many components cor¬ 
responding to the infinitely many points of a line segment (a, l>)- It is 
such notions that lead to the terminology in the following definitions. 

Definition 3. The functions fix) and g{x) are orthogonal on the interval 

a % x £ b 4—► 

j* fix) g(x) dx = 0. 

Definition 4. The function f{x) is normed on the interval, a £ x g 6 

4—> f* P(*) dx = l. 

The terms of series (1) form good examples of orthogonal functions. 
Each term is orthogonal to each other term on the interval (—x, x). 
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A given term will be normed only if the corresponding coefficient Ak 
or Bk is suitable. We have, in fact, the following orthogonality and 
normality relations: 

L 
L 
L 
\L 
v: 

cos mx cos nx dx = 0 

sin ffixsinnuiix =0 

cos mx sin nx dx = 0 

sin® nx dx = l 
i 

cos® nx dx = 1 

m i* n; m, n = 0, ±1, ±2, • ■ • 

m ?£ n; m, n = 0, ± 1, ±2, • • . 

m,n = 0, ±1, ±2, • • • 

» - 1, 2, ■ • • 

71 = 1, 2, 

Let us prove the first and last of these equations only. From Peirce's 
Tables, #596, we have 

cos mx cos nx = h cos (m — n)x + £ cos (m + n)x. 

Integrating over (—it, ir), we obtain the desired result. 
By use of these facts, we can obtain a useful relation between 

trigonometric series and Fourier series. 

Theorem 1. 1. Series (1) converges uniformly to f(x) in — ir £ x £ ir 

It is live Fourier series of f(x). 

For, if we multiply the series by cos nx, it remains uniformly con¬ 
vergent in —ir £ x £ ir and can be integrated term by term: 

J_WM cos nx d* = ~ f * cos nx dx + 2-/:. cos kx cos nx dx 

sin kx cos nx dx. 

By the orthogonality and normality relation, we have 

cos nx dx — An n = 0, 1, 2, 

The constants Bn are determined in a similar way. 
This theorem shows a relation between the defining function of a 

Fourier series and its sum. We shall be able to show that for a very large 
class of functions the Fourier series converges to its defining function. 

1,3 Further examples of Fourier series 

When we compute the coefficients of a Fourier series from its defining 
function, it is useful to recall the following facts: 
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fix) is even <—¥ f(—x) - /(x) 
f(x) is odd i—¥ /{— x) = ~fix) 

/Or) is even -> j°g f(x)dx = 2 f“ f(x) dx 

/Or) is odd —y /_ a /(*) dx = 0. 

The numbers at, h of equations (3) are known as “Fourier cocllicients” 

of /(*). 

Example C. f(x) - x in the interval — ir £ x ^ v. The Fourier 
coefficients of this function ore 

Example D. 

o* = 0, since f(x) is odd 

bk = - f a: sin kxdx — ( —lj^'2/fc 
* Jo . , 

k = 
The Fourier scries for x is 

. 2 sin 2x . 2 sin 3x 2 sin 4a: 
2sina:-+ —3-— 

f(x) = !*] — ir g * £ 7T, 

1, 2, 

2 1 2 
Ok — — I X COS kxdx = s [cos k'TT — 1] 

k = 1, 2, • ■ • 
do — IT 

bk — 0, since fix) is even. 
The Fourier series for \x\ is 

* 4 / . cos Zx . cos 5x . \ 

EXERCISES (1) 

Find the Fonner series corresponding to the following f unctions: 

1. /(a) - s* — Tf ^ X ^ 7T. 

2. /(*) - x- 0 ^ X ^ W 

= —a:3 -IT £ X % 0, 

09
 

s
 

w 
4-

1=
1 

— 7T ^ X ^ IT, 

4, f(x) = sin2 x “ 7T £ X ^ IT. 

5. f{x) ~ x 0 ^ x ^ ir/2 

— TT “ X x/2 

= -/(-*) -ir ^ x g 0, 

6. /Or) = cos cx 
Here c may or may not be an integer. 

^7T £ X ^ IT. 
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Answer: If c is not an integer, the Fourier series for cos cx is 

7, Plot carefully the two functions 

fix) = \x 

sin 

0 ^ x £ tt/2 

n/2 ^x^ir 

0 ^ x 5 7T. gix) = sin x p 

Note that £/(.t) is the sum of the first two terms in the Fourier series for 
/(*)• 

8. Prove the rest of the orthogonality and normality relations. 

9. Prove that, if a function is multiplied by a constant, each of 
its Fourier coefficients is multiplied by that constant. What happens 
to the Fourier coefficients when the constant is added to the function? 

10. Is the following series a Fourier series: 

B 

2 
k-2 

cos (2 k2 — k~\- 7)a^ 
jfc(log k)£ 

Up Prove: 1, lim hpAk = A 
k—* » 

2. lim kpBk = B 
k—* « 

-> series (1) is a Fourier series. 

p > 1 

p > 1 

12. Express the Fourier coefficients of f'{x) and in terms of 
those of fix). 

13. Prove: The sequence of Fourier coefficients of a continuous 
function is a bounded sequence, 

14. Prove: fix) t C" and fix + 2t) - fix) -V the Fourier series 
for f(x) converges uniformly in every finite interval. Does this prove, 
by the aid of Theorem 1, that the sum of the series is f(x)? 

16, If f(x) is defined in (0, r), its definition in (~xT 0) can he given 
so as to make/(e) either even or odd. What do the Fourier series and 
the Fourier coefficients of f(x) become in the two cases? 

§2* Several Classes of Functions 

Examples A, C, and D of §1 illustrate classes of functions which 
frequently appear in the theory of Fourier series. We shall be able to 
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show that the series of those three examples actually converge to then* 
defining function, at least at points of continuity of the interval (—irf ir). 
But each term of the Fourier series has period 2irt so that the sum of 
the series must also have that period. Hence, if the series of Example 
D, say, is to converge to f(x) from — to + & , f(x) must be defined 
outside of the interval (—ir, it) so that f(x + 2w) = f(x) for all x. If 
this is done, the graph of the function in Example D will have a saw¬ 
toothed appearance. The continuous graph is really composed of infi¬ 
nitely many line segments joined together. Before the time of Fourier 
such a graph was not thoiight to define a function at all, but many 
different functions. It may well be imagined that the mathematicians 
of Fourier's time experienced a severe shock with the knowledge that 
such a saw-toothed combination could be represented from — ™ to + 
by a Fourier series, each term of which belongs to Cm in (— <», «>). 
Example A must have been even more surprising, for there the sum of 

the series is discontinuous. 
Let us point out the properties of the functions of Examples A, C, 

D that are essential for the convergence of their Fourier series to these 
defining functions. The functions are continuous except for a finite 
number of points in every finite interval. They have period 2x. At 
all but a finite number of points of each finite interval, the graphs of 
the functions have definite slopes. Indeed at all points, even at points 
of discontinuity, the graphs have right-hand and left-hand slopes. In 
order to avoid repetition of these various properties, we shall define 
several new classes of functions. 

2.1 The classes P, D7 Dl 
In the rest of this chapter, we shall suppose, unless otherwise stated, 

that all functions are defined from — « to + , The classes we are 
about to introduce include such functions only. 

Definition 5. f(x) tP i—f f(x + 2tt) - f(x) — < x < oo . 

Example A. f(x) = x/4 2kir < x < (2k + 1)tt; 
k - 0, ±1, ±2, • * * 

=* -tt/4 (2fc - l)ir < X < 2far; 
k — 0, +1, ±2, ■ ■ ' 

— 0 x = for; k « 0, ±1, ±2# • * * • 
We shall show that the Fourier series for this function 
(see Example A, §1) converges to the function for all x. 
Observe that the definition of f[x) can be changed at 
any finite number of points of —tt ^ ar £ it without 
effecting the Fourier coefficients of the function. We 
have altered the definition from that given in §1 
(at x * tt and x = —t) so as to get convergence at all 
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points. It is obvious by inspection that the sum of 
the Fourier series is 0 at * = 0, ±ir, ±2, r ■ • • . 
Clearly f(x) e P. 

Definition 6. f(x) has a finite jump at x = c 
<—► A. /(c+) exists 

B. f(e —) exists 

C. f(c+) * /(c-). 

In Example A f(x) has a finite jump atx = 0, +», ±2*, • ■ * . For 
example, /(0+) = jt/4, /(0 —) = —t/4. The function l/x has an 
infinite jump at x = 0. 

Definition 7, f(x) e D i—► f(x) has at most a finite number of finite 
jumps in every finite interval. 

To show that f(x) t D, it will be sufficient to show that /(c+) and 
/(c—) exist for every c and that the two values are equal with but few 
exceptions. If f(x) eP, the exceptions must be finite in number in the 
interval — w £ x £ x. Of course, a single discontinuity in that interval 
produces infinitely many in (— <x>, »). The functions of Examples A, C, 
D all belong to D. Obviously, ft C -► ft D. 

Definition 8. f(x) e D1 
f - •> A. f(x) e D 

B, The graph of f(x) has a right-hand and left-hand, slope 
at evei'y point. 

The geometric language needs analytic elucidation, especially 
when f{x) jS C. If f(x) t C at x = c, clearly the right-hand slope and the 
left-hand slope at c are, respectively, 

lim /tc + y-flc), lim + 
a*-*o+ Ax &x->q- Ax 

But for the function of Example A these limits do not exist at c = 0; 
(they are + » and — ™), Yet we wish to agree that the graph in that 
case does have right-hand and left-hand slopes ( = 0) at every point. 
Clearly, what is needed is the following: 

(1) right-hand slope of f(x) at c — lim — —/('idll 
Ac 

(2) left-hand slope of f(x) at c = lim —€ 
ix^*o- Ax 

To show thatft Dl we must show that/c D and that the limits (1) and 
(2) exist for all c, At most points these limits will be computed by the 
ordinary rules of differentiation. 

Example B. f(x) — x sin (l/x) 

m = 0. 
X 7* 0 
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Here f(x) e C, f(x) c D, f(x) £ D\ Clearly, 

* lim A0 + te) - /(°+) = Um sin (1/At) 
A*—*0 + AX Ax-*0-f- 

does not exist. 
Note that the functions of Examples A, C, D, §1, 

all belong to DK The function of Example A does 
not belong to C. 

Example C, f(x) — x sin (l/x) 0 < x < 
-1 — « < x ^ 0. 

Here f{x) t f(x) f Ct f(x) f D.1 Clearly, f(x) £ C* 
except at x = 0. But /(0+) — 0 ^ /(0 —) - 1. 
Finally, the limit (1) does not exist, though the limit 
(2) is zero, 

2.2 Relation among the classes 

The interrelations among the various classes of functions which we 
have considered are best kept in mind by use of Figure 38, Each point 
inside a given circle is thought of as corresponding to a function of 
the class that the whole circle represents, A point common to several 
circles indicates the existence of a func¬ 
tion belonging to all of the correspond¬ 
ing classes. To show that the classes 
have the relation indicated in the fig¬ 
ure, one must show the existence of at 
least one function corresponding to the 
various regions into which the plane is 
divided by the circles. These ex¬ 
amples a re inserted in the figure. The 
class corresponding to a given circle is 
marked on the circumference of that 
circle. Obviously, the choice of a 
circle for the region is unimportant. 
We shall show that f tPt ft Dl -> 

the Fourier series for/(a:) converges to /(as) at all points of continuity. 

2.3 Abbreviations 

To shorten the writing in subsequent work, we shall introduce the 
following abbreviations: 

C0(x) — a0/2 
Ck(x) - ak cos kx + 6* sin k% k — 1, 2, * * * 

n 

S*(x) = ^ Ck(x) 7i = 0, 1, 2, ••• . 
*-0 

(3) 
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Here a* and bt are defined by equations (3), of §1.1, so that the notation 
applies only to the Fourier series of a given function fix). This Fourier 
series can now be written as 

□g- 

2 C>(x), 
k-Q 

and we shall want to prove that, if f(x) z P, f(z) e D\ then at points of 
continuity of f(x) 

Um Sn(x) = fix), 
*1-* * 

EXERCISES (2) 

To which, if any, of the classes C, C\ D, D\P do the following functions 
helongt 

1. fix) = sin 17x; f(x) = sin 3vx; f(x) — cos x/2. 

2. f(x) = V\x[. 

3. f(x) = VRp. 

4. f{x) = e~Vz (define f(x) at a: = 0). 

6. fix) = xe~Uz (define fix) at x — 0). 

6. fix) 

GO 
V COS kx 

4 k* ' 

dt 

8. f{x) — [rx]m, [a] means the largest integer ^ a. 

9- f(x) — xrl sin (l/x)f x ^ 0; /(0) = 0, 

10* f(x) = 1, x rational ;f(x) — 0, x irrational. 

11* Prove: 1* fix) e Z), 2. g(x) t C -f f(%)g(x) * D. 

12* Give an example where fix) z Z), f(x) $ C} g(x) e Ct f(x)g(x) e C. 

13* Prove: 1* f(x) t D\ 2. g(x) z Cl -> /(x)0(x) £ Z)1. 

14. Insert a circle for the class Cl in Figure 38 and insert the examples 
necessary to show the correctness of your drawing. 

IS* Solve the same problem for P. The new region need not be a 
circle* 

16* Prove: 1* f(z) z D 
2. f(x) e C1 
3* lim f(x) - A 

a^-*0 

-> f(x)zDK 

— cc < x < oe 

X 7^ 0 
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17* In Exercise 16, give an example to show f(x) f. C. Give another 
to show that hypothesis 3 cannot be omitted. 

§3. Convergence of a Fourier Series to Its Defining Function 

In this section we shall prove that, if f(x)zP, f(x) z Dl, then the 
Fourier scries for f(x) converges to/(x) at points of continuity. To prove 
this result, we shall need certain preliminary results, which are of interest 
in themselves. 

3.1 Bessel's inequality 

Theorem 2* 1. f{x) z D 

ti 

—> f + £ w + bn s ~ J'rwdx n = i,2, ■ 

Of course, the a* and bk are the Fourier coefficients of fix) defined by 
equations (3), §L By these equations and by the orthogonality relations, 
§1.2, we have for any positive integer n 

%fm = z fr w sum (l) 
a\ _ 1 
2 tr 

(2) 

(3) SC
 

11 
* 

i 

I f* 
(ikf(t) cos kt dt = - f 

r ft J —w 

bijit) sin kt dt = - I 
ft J —w 

(Ik Sn(t) cos ktdt 

k = 1, 2, 

bkSn(t) sin kt dt 

k — lj 2, * v# , n. 

Here S«(0 is defined by equation (3), §2.3. Adding all of the equations 

(1), (2), (3) (ft = l, 2, * - * , n), we obtain 

(4) f ^ w + *s> = i = 1 Jr^ sum 

Since 

(5) L = p PiOdl - 2 j' (/(f) - SM)Vdt = mdt - 2 f(t)S„it)dl + Slim /:■ 
and since tie left-hand side of equation (5) is non-negative we have, 
by equation (4), that 

i j^r-m - f - ^ +**) s o- 
1 
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and the proof is complete. The hypothesis /(x) t D insures that the 
integrals involved in the proof all exist. 

Example A. Take /(x) = ±7t/4 as in Example A, §1. Then Bessel’s 
inequality becomes 

+ ^2 + + (2» + l)a 

This is evident directly since 

>r_! 
8 

1 

t» +i)2 

Corollary 2. f{x) i D -» ^ ^ °* + ^ < 
k-l 

3.2 The Riemartn-Lebesgue theorem 

This is a result proved First by Riemann for continuous functions 
and later by Lebesgue for more general functions. The result which 
we shall prove here is a special case of the general theorem, but entirely 
adequate for the convergence theorem in the proof of which it is needed. 
A more general result will be proved later. 

Theorem 3. 1. /(x) e D 

-» lim [' /(i) cos kt dt = lira fw /(/) sin kt dl = 0. 
jfc—► "S J - * k-* K, J —r 

By Corollary 2 it is clear that 

lim at = lim bt = 0, 
Jt—♦ * k—* m 

since the general term of a convergent series approaches zero. This 
proves the theorem. 

Corollary 3. lim f* f(t) sin (k + i)l dl = 0. 
k—* « J ~w 

This is proved by expanding sin (k + i)t 

sin (k + v)t = sin kt cos il + cos kl sin %t 

and applying the theorem to the functions/(() cos (t/2) and/(i) sin (t/2). 
Example B. In Corollary 3 take /(t) = 1 (t > 0), f(l) = - l{i < 0)': 

f 'M) sin (l + i) I dl - 2FTT 

It is evident that this tends to zero when k becomes 
infinite. 
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Example C. /(x) = 0(x ^ 0);/(x) = x~l(x > 0). 
Here f(x) f D. We have 

[* i./A . ,, ,, f* sin kt,, sin t , 
J f(t) sm kt dt - j —-— dt = / —— dL 

#| 

Hence, 

lim f f(i) sin kt dt = f ^ «= 
fr—« JJq t A 

This example shows that hypothesis 1 cannot be omitted. 

131 The remainder of a Fourier series 

A compact integral form of the remainder of a Fourier series can 
now be obtained* It depends on the following trigonometric identity. 

(6) Theorem 4. g + cos x + cos 2x + * - • + cos nx 

_ sin (it + |)s _ - ^ ^ - 
2 sm (x/2) 

At points where sin (x/2) = 0, it is understood that the indeter¬ 
minate form on the right is to be replaced by its limiting value. To 
prove the identity, note that 

Hence, 

2 sin kx cos kx = sin (k + i)x — sin (k — £)x* 

n 

— sin (ft + 

The result is now evident when sin (x/2) ^ 0, If a: — 0, ±2tt, ±4ir, 
* * * , it is sufficient to apply a limiting process: 

* 1 v sm(n + ^)x 
n + h = lim 0 ; f - 

2 2 sin (x/2) 

Corollary 4.1* 
sin (n + |)x p 

2 sin (x/2) E 
n = 0, 1, 2, 

The functions in numerator and denominator have the period 4?r, 
but the quotient has period 2tt. 

_ * _ i fw sin (n + |)x , - 
Corollary 4.2. f J ^ 2£ (x/2) <>* = 1- 

This is obtained by integrating both sides of equation (6), 
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f 
^•<‘1 

ft 

! iT, 

[th, XII §3.4 

Theorem 6- 1, f(x) z D 
2. f(x)zP 

fix) - Sn(x) = - r U(z) - fix + /,)] ftt+Jgj di 
x J -X 2 sin {i/2} 

n = Oj 1, 2, 

By Corollary 4.2 it is sufficient to prove that 

8, :.w-i 
J —IT 2 sin (i/2) 

By the definition of *8*(a;) and by Theorem 4 we have 

&.(*) = ^ 

-f COS (x — 0 + = ;/>D 

= 1 fT me™J%±mx.-Jdt. 
IT J -w 

+ cos ra(x 
-1 

di 

2 sin (x — f)/2 

Now set f. — x - u 

(7) 
& / s 1 fx * ^ sin (n 4- > 
S"W - ; + “> 2 sin «/2 du- 

But by Corollary 4.1 the integrand, considered as a function of uf has 
period 2tt. Hence, the limits of integration on the integral (7) may be 
replaced by — t and w. 

3*4 The convergence theorem 

Theorem 6. L fix) tP 
2. f(x) e D1 
3* f(x) e C at x — xo 

f(x 

•>=J: 
Ck(Xa). 

By Theorem 5 we need show only that 

lim ^ lf(xo + t)~ fixo)] SLnin ,+i? dt = 0. 
n— «* J —t 2 sin (i/2) 

This will follow by Corollary 3 if 

r > _ fix 0 + t) ~ fixo) 
0{t) ~ 2 sin (i/2) * D' 
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Since g(t + 27r) — it nil] be sufficient to show that g(£) has at 
most a finite number of finite jumps in the interval — tt ^ x S But 
in that interval g(t) has the same discontinuities as /(xo + 0 with a 
possible additional one at t = 0, But 

gi 0+) = lim 
I-+0 + 

= lim 
i--+0 ■4~ 

fix* +t)~ f(xo) H t 
t ^0+ 2 sin (i/2) 

f(Xo + t) — f(xQ) 
t 

For f/( 0 —) replace i—>0+ by t—*0 —, Since f(x) t D1} these limits 
exist and are, in fact, the right-hand and left-hand slopes of f(x) at Xo- 
This completes the proof,* 

Example D. If f(x) is the function of Example A, it is clear that 
f(x)*P, f(x)zD\ Hence, for ft =0, ±1, ±2, • ■ - 

H 

V sin (2fc + l)x x „ ^ m i i\ 
4 2&+1 • = 4 1 + V* 
i = 0 

= — | (2ft — l)ir < x < 2«tt 

= 0 X = IMF. 

The value of the sum of the series at the points of dis¬ 
continuity of fix) cannot be found by Theorem 6. 
For the present simple example the value can be 
determined by inspection. 

EXERCISES (3) 

1. What does Bessel’s inequality become for Example C, §1? 
Verify the result. 

2, What does Bessel’s inequality become for Example D, §1? 

* ,* fT sin x cos kx r n 
3, lim / --- - dx = 7 

7 o s/v* 

(' 4* lim / sin2 kx dx — ? 
k—> » J —it 

5* lim / \/sin x sin2 kx dx — ? 
k—* « J D 

6. lim [ x ^/\c 
Jfe-** 7 0 

log x cos2 kx dx = 7 

* Note that hypothesis 2 is stronger than needed. For the convergence of the 
Fourier series to /(xo) at it is sufficient to know the behavior of f(x) in a neighbor* 
hfiftd of Xo. 
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„ if sm8 kt „ 
7. Iim T / —dl = ? 

J 0 t 
* 

8. Write out the remainder in integral form for the series of Examples 
C and D, §1. 

9. Provo: f sin kx = cos (j/2> 7 ”*+ *>» 
i-t 2 sm {x/2) 
*-] 

(x/2) 

sin [(na)/2| sin [(n + 1)a/2] 
sin {x/2) 

ri 

10* Prove: y cos (2k — I)x = ^nxm ^re there exceptions? 
JL+i A sm x 

i 

11. Prove analytically: L f(x) t C; 2. /(e) c P 

jTa+ir 

/(£)dx = / /(xjdx, — < a < to* 
J a-* 

12. Apply Theorem 6 to Examples C and D, §L 

/: 

§4. Extensions and Applications 

In this section, we shall make several applications of Theorem 6 and 
extend it to include points of discontinuity. In addition, we shall 
extend Reimann’s theorem to include the case in which the interval of 
integration is arbitrary instead of (—71-, *-) and in which the variable 
becomes infinite continuously instead of through the integers. 

4.1 Points of discontinuity 

Theorem 7. 1. f(x) t P 
2. f{x) t Z>> 

m _l f(x+) + fix—) _ V r , . 
'■1' * 2 - A — °° < x < <*, 

At points of continuity of f{x), the left-hand side of equation (1) 
is equal to f{x) and the result is given by Theorem fi. Equation (1) 
is clearly tiuc for Example D. §3, IDenote the sum of the Eourier series 
of that example by g(x). Then ff(0+) = t/4, g(0-) = -T/4, ff(0) = 
(tt — ir)/8 = 0. Theorem 7 is obviously valid for <7(3;}. 

Let x = c be an arbitrary point of discontinuity of f{x). Consider 
the function 

(2) h{x) =f(X)-?£gix-c)i j = f(c+) - f(c~). 
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Then 

h(c) = /(c), 

h{c~) =/(c+)+/(C-)- 

h(c+) = f(c+) - % • I = /(c+)+/(c~) 

If we alter* the definition of h{x), if necessary, so that 

/i(c) = /t(c+) = A(c-), 

then h{x) t C at x = c. By Theorem 0 the sum of the Fourier series 
(or h{x) at as = c is equal to h(c). By equation (2) the Fourier series 
for h{x) is the sum of that for f{x) and the one for —2J g{x — c)/it. 
But the sum of the latter sorics at x = c is zero. 
Hence, 

/(c+)+;(C-),Vw 

k~\ 

Since c was an arbitrary point of discontinuity, the proof is complete. 

4.2 Riemann's theorem 

Theorem 8* I. f(x) t D 

lim 
X^f+ « 

fb fb 
I f{t) ^inxtdl = lim / f{t) cos xt dt = 0. 

J a ►+ ® J a 

Let us treat one of the integrals only. Set 

/(f) sin xt dt 

sin xu du 

m . /; 

Set xt — xu + Wj so that 

i(x)=- fjf (u+t)eii 

2/(x) - - /; wf(^ + ^ sin art dt + w f(t) sin xi dt 

+ * [/to - / + j) J sin xt dt. 

Since/(x) e Df we can decompose {a} b) into a finite number of intervals 
in each of which /(x) e C* The integral will be the sum of integrals 
corresponding to these intervals and we need only show that each of 
these integrals approaches zero. Ilcnce, there is no restriction in sup- 

* Alteration of a function at isolated points cannot alter the Fourier coefficients 
of the function. 
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posing /(x) e C in a ^ i £ [i, Then there exists a constant M such that 
I/O*) I < M in a £ i £ b. By uniform continuity there corresponds to 
an arbitrary e > 0 a number 5 such that the relations 

imply 

Choose 

a ^ x' £ b, a £ x" & b, ]xf - x"\ < 6 

I/O*') - /(*")! <« 

x' = t. _ = t + b 
|a:' ~ “ ffi < *■ 

This can clearly be done by choosing x sufficiently large. Then 

2i/(z)| <2 M? + e(b-a) 

IT^ 2|/(as)| £ *(6 - a) 

lim I(x) — 0. 

This completes the proof. 

4.3 Applications 

Example A. From Example A of 
Theorem 6, 

£ = i — A + I 
4 3^5 

we have at x = t/2, by 

This can be checked by Maclaurin’s series for tarr1 x. 
Example B, At the close of Chapter XI we gave without proof 

t he values of certain series. We can now supply the 
proofs, I n Example D, § I, f (x) t P} f(x) t D\ f(x) t C. 
Hence, we may apply Theorem 6 at x = 0 to obtain 

•-i-j(,+p+i+"') 

Set 

Then 

_ = 1 + i. j. i j. 

8 ^ 31 ^ 52 ^ 

A-l+i+i+ 

T"i + p + ji + 

and by addition 

A 4._ , , l , 1 , 
4 + 8~1 + 25 + 3~* + 

Hence, A = ir2/6, and A/4 

■ =» A. 

A J/24, so that the three 

Ch. XII §4,3| FOURIER SERIES 341 

series have the values attributed to them in the 
previous chapter. 

Example C. If f(x) — cos cx, —x £ x £ it, and f(x 4- 2w) = f{x), 
— oo < x < oo, then }{x) satisfies the hypotheses of 
Theorem 6. Setting x = 0 in the Fourier series for 
/(:r), Exercise C, §1, we have 

(8) 

2c (±_L_ 
\2c2 c2 - 1 5 + c1 - 2* Sin ire 

By Theorems 13 and 14 of Chapter XI, 

r(c)r(l - c) = B(c, 1 - c) = [ ^~dx 

n jge-l [1 t-c 

- ],+ —xdx + Lm 

Making use of the identity 

1 

) 

■dt 

0 < c < 1 

x -trK 

= 1 

we get 

r(c)r(l - e) - f ‘ 
JO-i 

1 + * 1 + X 

x'-'dx + fl 3^*-^ 
/o+ 1 + * 

But by expanding the integrand of the second integral 
in power series, wc have 

r(c)r(i -«) - \ - - rh) 

+ (rh - T=i) _ Gt5 “ + ■ ■ • ’ 
whence 

r(c)r(i - c) = 
sin ire 

0 < e < 1. 

To Justify the term-by-term integration, we may show 
that the remainder of the integrated series approaches 
zero, or that 

(an* — x*)dx — 0, 

Set 

lim 
Ja 1 

Max ’ 
O&cSl 

+ X 

1—c Z1+* 
l + X 

Af. 

M 
Then 

(x~c — xe)dx < M I xkdx — — * 

whence the desired result becomes evident. 

LUll 

r ^-i 
Jo I + * i: 
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Example D. Again making use of the Fourier series for cos cx, we 
have 

ctn ti = ^ (i + jr~-fa + jr—ji + ■■■) 

t * 0, ±1, ±2, • • • 

'ct°'‘-r-X<r=T4' 

Integrating term by term from 0 tox, -1 < x < !, 
we see that 

*-1 

The term-by-term integration may be justified by 
uniform convergence. The latter equation clearly 
gives the following infinite product expansion of sinirx: 

sin ttx — xx(l - x!) ^1 - ^ ^1 -jj^ • ■ • 

-1 < x < 1- 

The expansion is actually valid for all x. In particu¬ 
lar, when x = i, we have 

Jr _ 2 • 2 4 ■ 4 6 ■ 6 

2 1 • 3 3 ■ 5 B • 7 ‘ ' 

a result which was established earlier. 

EXERCISES (4) 

1. Set f(x) = 0, —it Si g 0; f(x) = t, 0 < x £ it. What will be 
the sum of the Fourier series of this function at x = —it, x = 0, x = +*■? 
Obtain your result both by use of Theorem 7 and by the actual Fourier 
series. 

2. Solve the same problem for f(x) = —it, —it %. x g 0; f(x) = x, 
0 < X JT. 

3. Use the Fourier series for the function f(x) — e1, 0 £ x £ 27r 
to find the sum of the series 

Xptt 
k-l 

4. For what values of x does 
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6. Find the sum of the series 

(2 ways). 

*« i 

6. Show that the maximum M in Example C is not greater than 2. 

7. Verify the validity of the term-by-term integration of the series 
in Example D. 

8. Prove by use of the equation 

r(ar + 1) = x T(x) 

that equation (3) holds for all non-integral numbers c. 

9. By means of Exercise 9, §3, show that 

£ - X /> j - - i /; * 
t-1 Jt-i 

Hence, show that 

10. Show that 

I (o • A V cos Ax 
l0»P""s) -- h~ 

k- 1 

0 < x % v. 

/: 

n 
cos 2kx log (sin x)dx - — k — 1, 2, 

and then show that the series of Exercise 9 is a Fourier series. 
Hint: Integrate by parts; express sin 2fcx eos x as the sum of two 

sines; use Theorem 4, replacing x by 2x* 

11* By use of Exercises 9 and 10? show that the sufficient conditions of 
Theorem 7 are not necessary. 

§5. Vibrating String 

In this section, we shall discuss one of the classical physical applica¬ 
tions of Fourier series. The problem of the vibrating string may lie 
taken as typical of the physical situation which can be analyzed by the 
series; in fact, it is so typical that the term harmonic analysis lias come 
to be applied to (he general study of Fourier series. In many physical 
problems it will be convenient to study functions which have periods 
different from 2tt. Accordingly, we shall begin by considering a suitable 
generalization of Fourier series so that they may apply to an arbitrary 
interval rather than to (—?r, x). 

5.1 Fourier series for an arbitrary interval 

Since the interval (~Z, l} can be reduced to the interval (—tt, it) by a 
simple change of variable, it is easy to sec that the functions cos (Icxx/l), 
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sin (ftrc/i), k « 0, I, 2, ■ • * , form an orthogonal set on the interval 
I). Let us place the two series, corresponding to the intervals 

(—t, ?r) and ( —i, i) in juxtaposition ; 

GO 

?? Zj C°S *X *X 
«*. V 

+ / ak cos £t 
httx . kwx 
— + o* sin — 

k- 1 *-l 
1 fT 

ak - - 1 f(x) cos kx dx (fix) cos dx 

(1) 

1 f* 
I)* = - I f(x) sin kx dx 

* J -w 
fix) sin ~ dx. 

-t t 

Example A. J(x) = 2hx/l 0 S x g 1/2 
f(x) = f(l - x) 1/2 g x £ l 
/(x) = -f(-x) — °° < X < <x> 

f{x + 20 = /(x) — <*= < X < «>. 

It is a simple matter to compute the Fourier coefficients of this function 
by formula (1). Of course, Theorem 6 will be applicable to the present 
function, so that 

*-0 

5.2 Differential equation of vibrating string 

In setting up the differential equation of a stretched elastic string we 
make certain simplifying assumptions. One may keep in mind the 
situation obtaining for a piano string or for a violin string. Here the 
vibrations are very small and the tension is high. The force of gravity is 
negligible. We shall make the following assumptions. 

I. There is no gravity, air resistance, nor other damping factor, 
II. The motion is all in a single plane. 

III. All moving points of the string move in straight lines perpendicular 
to the same straight line, called the “ line of equilibrium.” 

IV. Compared with, the length of the string, the motion of any point of the 
string is small. 

\ . At any point, the angle between the siring and the line of equilibrium 
is small. 

Although these conditions can never be completely realized, still they 
are so close to actual conditions in the examples cited above that theo¬ 
retical results obtained by their use will fit the observed facts extremely 
closely in most respects. In certain other respects, the theoretical 
results will be quite far from the facts. For example, as a result of 
the first assumption, we shall see that any vibration, once started, will 
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continue undiminished forever! It is altogether possible to introduce a 
damping factor, but this would bring with it mathematical complications 
which might obscure the method and would not alter the principal results 

regarding overtones, etc. 
Take the line mentioned in III, the line of equilibrium, as the E-axis. 

By II and III the motion will be completely described by a function 
y(x, l), where t is, for example, the number of seconds after some initial 
time i = 0, x and y are the coordinates of a point of the string at time (. 
Assumption IV means that y(x, 0 is small. Assumption V means that 

yi(x, t) = — yix, l) is small, so small that the sine of the slope angle, 
dx 

tan-13/1 can be replaced by the tangent of that angle. By assumptions 
IV and V, the tension T in the string may be taken constant. 

We now isolate a portion of the string and apply Newton’s law: 
Mass times acceleration equals force. For definiteness, let us use e.g.s. 

units: 
x, y in centimeters 
(in seconds 
p, the density, in grams per centimeter 
a, the acceleration, in centimeters per second per second 

T, the tension, in dynes. 
Let P and P' be two points of the curve y — y{x, t) with x coordinates, 
x and x + Ax, and slope angles, <p and y> + A<p, respectively. Let the 
center of gravity of the arc PP' have x coordinate x 4- 6Ax, 0 < 6 < 1. 
By V the mass of the string between P and P' is pAx. There is a force 
at P' whose y-component, tending to increase y is T sin (<p + A<p), one 
at P whose y-component, tending to decrease y, is T sin <p. The net force 
tending to move the segment PP' in the direction of increasing y is 

Tfsin (<p + A<p) — sin <p\. 
\ 

The acceleration of the center of gravity of the segment is + 0&x, t). 
Now applying Newton's law to a particle of mass pA# at the center of 

gravity, we have 



346 FOURIER SERIES fCh. Xli §5.3 

pAx 1/2i(x + OAz, 2) — T[sin -f- A<p) — sin ^ 

If sin <p is replaced by tan <p, this equation becomes 

pAxyit{x + OAz, i) = T[y,{x + Ax, l) - yx{x, /)] 

= 2fyu(x + O'Ax, t)Ax 0 < O' < 1. 
Cancel Ax and let Ax —*■ 0: 

(2) Vssix, 0 = cT/n{z, t) o’ = T/p. 

Ue have set T/p = c1 because T/p has the dimensions of a velocity 
squared. Equation (2) is the partial differential equation of the vibrating 
string. It is linear, of the second order, and with constant coefficients. 
It is said to bo of hyperbolic type, 

5.3 A boundary-value problem 

Let us assume next that the string is fixed at the two points (0, 0) 
and (0, 0, und that it is released from rest in a distorted position, given 
by the curve y = /(:r) where f(x) is small. Let us try to determine the 
subsequent motion. We must find a function y{x, t) satisfying equation 
(2) and ttie boundary conditions: 

L 2/(0, t) = y(l, t) = 0 0 £ ( < oc 
2. y(x, 0) = f(x) 0 giS / 
3. y2(x, 0) = 0 0S*S|. 

It is clear that the given function/(a:) must be such that/(0) = f(l) = 0. 
We begin by looking for functions y(x, l) of a special type, 

2/(*, t) = g(z)h(t). 

ff this is to satisfy equation (2) we must have 

g"fr) _ 1 A"(0 
g{x) c2 h{t)' 

Since the left-hand side is a function of x and the right-hand side a func¬ 
tion of f, this equation cun hold only if both sides are constant. We may 
take this constant positive, zero, or negative. Setting the constant 
equal to «2, 0, or -a2, we have ordinary equations to solve. In the three 
cases, we obtain 

Case I. y{x, t) = (A smb ax + B cosh ax) (C sinh act + D cosh act) 

Case II. y(x, t) = (Ax + B)(Cl + D) 

Case III. y(x, t) — (A sin ax + B cos ax)(C sin act + D cos act). 

It is easy to see that, in Oases I and II, yix, t) must be identically zero 
if boundary condition 1 is to be satisfied. For example, in Case II, 

2/(0, t) = B(Ci + D) = 0 0£i<oo 
y(l, t) = (Al + B)(Ct + D) = 0 0 £ 2 £ *. 
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The first equation shows that J3 = 0, the second that A = 0, whence 

y(x, l) is identically zero. 
But in Case III we can find infinitely many solutions satisfying 

boundary conditions 1 and 3. They are 

(3) 
, , , krrx lend 

yk(x, t) — h sin — cos —p k = 0, ±1, +2, • * * . 

Here the constants fc* are arbitrary. But none of these functions will 
satisfy condition 2 unless f(x) happens to be of the form b/: sin (farx/I). 
But notice that the sum of any number of the functions (3) will satisfy 
equation (2) and conditions 1 and 3. We can hope that it may be possible 
to determine the constants 6* so that the sum of the series 

t-i 

will be the solution of our problem. If f = 0, the scries is a Fourier 
series. Can its sum be y(x, 0) = /(x)? Yes, if jf(x) satisfies the condi¬ 
tions of Theorem 6 and if the 6* are determined by equations (1). 

5.4 Solution of the problem 
It must not be supposed that we have proved that the function defined 

by equation (4) is the required solution. The sum of the infinite series 
(4) may conceivably fail to satisfy equation (2) even though its general 
term does so. In fact, we arc not even certain of the convergence of the 
scries except when t = 0. Let us extend the definition of fix) outside 
the interval (0, l) so that /(—x) = — fix), fix + 21) = /(x) for all x. 
Let fix) e C, fix) e DK Then by Theorem G 

fix) = ^ bk sin -p 

fc" 1 

— go < X < «. 

Since 

. farz kircl 
stn -|— cos —= 

we see that the series (4) 

! j^sin y (s + ct) + sin ^ (* “ e0 

is the sum of two convergent series and that 

(5) „(*, 0 - /(»+ +/fr - <*>.. 

It is now evident by direct differentiation that equation (2) is satisfied 
at all points (x, i) such that fr*(x ± ct) exists. This is all one could hope 
to prove. Actually, in any physical problem f(x) z C2; though in the case 
of the plucked string, actual conditions are very closely approximated 
by defining the curve y = f(x) as a broken line (Example A). 
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Note that to plot the functions f(x ± ct) it is only necessary to 
translate the curve y = f(x). lienee, the motion may be regarded as 
the sum of two others each of which is a translation of the curve y = f(x) 
with velocity c, one to the right, the other to the left. 

5.5 Uniqueness of solution 

In view of the rather special way in which the function (4) was found, 
one naturally raises the question whether there might not be other solu¬ 
tions. If so, we may have no reason to suppose that the solution we have 
obtained will be the one that fits the physical facts. Suppose there were 
two distinct solutions. Their difference z{x, t) would be a function such 
that 

(6) ztt(x, t) = c*zn(®, t) 

(7) 3(0, t) = z(l, 0=0 0 £ t < oo 
(8) z(x, 0) = 2i(z, 0) = 0 0 g x < l. 

Make the change of variable 

x — ct = u x - (u + v)/2 
x + ct = v t — (v ~ u)/2c. 

Equation (6) becomes 

whence 

d-z 

dudv = o, 

Z - <p(u) + $(v), 

where t Cl, e Cl and arc otherwise arbitrary. That i$3 

z — <p(x — ct) + $(x + ct). 
By equations (8) 

<p(x) + f(x) = 0 
<Pf(z) — if/(x) = 0, 

from which it is clear that p(x) and ^(x) are constants. But by equations 
(7); z must be identically zero, and the assumption that there were two 
distinct solutions is false* We have thus established that the function 
(4) is the unique solution of the differential system consisting of equation 
(2) and boundary conditions 1, 2^ 3. 

5*6 Special cases 

Certain special cases are of particular interest. 

Example B. f(x) ~ h sin (rx/l) 
Then 

y{xf t) =* h sin (rx/l) cos (ret/l). 

Note that the curve always keeps the shape of one 
arch of a sine curve* suitably scaled down. The 
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motion is clearly periodic with period 2l/c = 2l(p/T)y* 
and frequency (2/)-,(7T/p)^. The musical note pro¬ 
duced by such a vibrating string is called the funda¬ 
mental of the string. Observe that the frequency 
(which determines the pitch of the note) of the string 
is inversely proportional to the length, proportional 
to the square root of the tension and inversely pro¬ 
portional to the diameter of the string. These facts 
are all used in the construction of a piano, or harp, 
for example. Of course, h must be so small that 
the original assumptions are valid. This constant 
determines the intensity of the note. 

Example C, /(as) = h sin (krx/l) h = 1, 2, * * * * 
Here 

y(x, t) — h sin (krx/l) cos (krct/l). 
The frequency is now found to be k times its value in 
Example B. The musical note produced is said to be 
the (fc — i)st overtime of the string. If the funda¬ 
mental has the pitch of C, the various overtones have 
the following pitch: 
k 

1 2 3 4 5 6 7 8 I 10 11 19... 

musical note 

C C G C EG Bh O D E F# G, . . . 

Note that the frequencies corresponding to the notes 
C, E, G are in the ratio 4:5:6, a familiar fact for the so- 
called just scale. 

Sample I>. The plucked string. Here we assume that f(x) is 
defined as in Example A, Then 

y(x, t) = 

5 X («r+i)»sin (2*+i)tc°8(2*+i) x 
Jfc-0 

Notice that theoretically the musical note correspond¬ 
ing to this motion of the string could be reproduced by 
combining fundamental and overtones with suitable 
intensities. It is this principle which is used in the 
construction of certain musical instruments, such as 
the electric organ. The note is said to be analyzed 
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into its various overtones. Hence, the term honnonic 
analysis, 

EXERCISES (5) 

Find the Fourier series for the following functions and find the sum of 
the series. 

1. fix) = x, 0 £ x < 1; /(-*) = /(*), /(* + 2) = /(s), for all x. 

2. /(x) = x, 0 £ x < I; (x + 1) = /(*), - « < x < 

3. /(*) = x5, 0 < x £ 3;/(x + 3) = fix), - « < * < ». 

4. fix) = 1, 0 S i S ir/2; /(x) = 0, tt/2 < x < tt; f(x + tt) = /Or), 
— 03 < x < <* . 

5. Give the details in Example A. 

6. Plot the position of the plucked string after •$ of the period has 
expired. Use equation (5). 

7. A stretched string has its ends fastened at points with rectangular 
coordinates (0. 0) and (0, tt) and is held initially in a curve with equation 
y = x — (xYr). When the string is released, what will be the ratio 
of the intensity of the fundamental tone to that of the first non vanishing 
overtone? 

8. Show that Case I, §5.3, is useless for the boundary-value problem. 

9. Give the details of the change of variable outlined in §5.5. 

10. Discuss the hammered string: 

3/(0, i) = y(r, t) = if(x, 0) = 0, y2(x, 0) = Fix) 

Fix) = 0 G ^ x < £ - 5, £ 4 5 < x £ *■ 
— & 

F(x) = k l-B£9£l + d 

F(-x) = ~F(x), F(x + 2tr) = F(x) - to < x < 

Give your result first in the form of an infinite scries. Then reduce 
to the following forms: 

y(%, 0 = ^ Jo lff(z - cu) 4 g(x 4 cu)]du 

Y fx+et 

- 2c 

11. Compare the maximum velocities of the mid-points of the strings 
in Examples B and D. In Example D use equation (5). 

12. In Example D, when the string was plucked at its middle point, 
the first and all odd numbered overtones were missing; that is, the 
Fourier series involved had all terms missing in which k was even. At 
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what point may the string be plucked so us to eliminate the rth overtone 
(A = r + 1, 2r + 2, • • • )? 

§6. Summability of Fourier Series 
We have seen that the Fourier series of certain discontinuous func¬ 

tions converge. One might be tempted to suppose that the Fourier 
series of a continuous function surely converges. This is not the ease. 
It was for functions of class Dl that we proved convergence. But there 
are functions of class C which are not of Dl (see Figure 38). In fact, 
Fejfir gave in 1910 the first example of a continuous function whose 
Fourier series diverges. This does not mean that every function of class 
C, not of class D1, has a divergent Fourier series. This is far from being 
the case. The conditions of Theorem 7 are sufficient but not necessary. 
That is, the actual region of convergence, Figure 38, is much larger 
than the region D', but certainly does not include all of the region C. 
If f(x) t C and if no further property of /(x) is known, then the Fourier 
series for fix) may diverge and we resort to summability methods. 
Fej4r showed in 1904 that the Fourier series of a continuous function is 
summable (C,l) to the function. We now prove this result. 

6.1 Preliminary results 

Theorem 9. 

CD 
k-Q 

sin (x/2) 

— 00 < x < OC ; 72 = I, 2, 

It is understood that the right-hand side of this equation is to be 
defined as zero when sin (x/2) — 0. The proof of the theorem is very 
similar to that of Theorem 4 and is omitted. 

i f sin2(!L^)i 
Corollary 9. -J ^ 2 s> s (,/2( dl = n 4 1 »-0,1,2,-... 

This follows by dividing both sides of equation (1) by 2 sin (x/2) and 
using Corollary 4.2 to obtain the integral of the left-hand side. 

Theorem 10. 1. fix) e P 
2. fix) t C 

-► <r»(s) - /(*) = 

1 
Tin 4 1) J _ f. 

sm 

[/(X + 0 - fix)] 
(*v) 

2 sin- U/2) 
n = 0, 1, • • 

dt 

(2) 
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Here 
ft 

(3) *.(*) = V S*(x), 

where S*(x) is defined by equation (3), §2. By use of equation (3) and 
Theorem 5, we have 

ft 

*«(*) - /(*) = i ^ [&(s) - Kx)] 

= *■(« + 1) /_r + l) “ /(x)l X 2 sin (1/2)(dt' 
t-o 

Then by Theorem 9 the proof is completed. 

6.2 Fejer's theorem 

It should be noted that the “kernel” in the integral remainder 
formula (2), [sin* (n + l)f/2]/[2 sin* (t/2)] is never negative. It is this 
important fact that makes the proof of Fej4r's theorem essentially 
simpler than that of Theorem 6. Xo preliminary result comparable 
to Corollary 3 is now necessary. It should be carefully observed where 
the positiveness of the kernel intervenes in the following proof. 

Theorem 11. !. f(x) e C 
2. f(x)tP 

m 

—► /(*) = ^ c*(*) (c,i). 
i-0 

We have only to prove that o-„(x) —>f(x) nsu^®. Let x0 be an 
arbitrary constant. Since f(x) t C at xo, there corresponds to an arbitrary 
positive t a number & such that when |(| g 3 we have |/(xo + f) — /(x0)| 
< t. Express the integral (2) with x replaced by x0 as the sum of three 
others, Iu It, Is, corresponding to the intervals (—•rr, -5), ( — 5, a), 
(5, *•). Then 

|/il < ir(n + 1) J - J~i 2 sin* (t/2) 
dt n = 0, 1, 

and the right-hand side is less than e by Corollary 9; (replacing a by t 
only strengthens the inequality). If M is the maximum value of j/(x)|, 
then, since sin- (x/2) t in (— ir, —5), we have 

.. , ^ 2M [~s dl ^ M 

1 11 r(» + 1) J-* 2 sin* (t/2) ~ (n + 1) sin* (a/2) 

n » 0, 1, 1 • - * 
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Also |/*| has the same upper bound. Hence, 
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2 M 
Wxo) - /£*•)! < 4 + (n + 1) sin* (a/2) 

Urn |ff»(xo) — /(xo)| £ * 
ft—* B 

lim i7„(xo) = f(xa). 
n—* w 

Since xo was arbitrary, the proof is complete. 

6.3 Uniformity 

Theorem 12. 1. f(x) e C 
2. f(x)zP 

-> lim xn(x) = f{x) uniformly in the interval —w £ * £ r. 
If—* B 

Since f(x) is uniformly continuous in the interval — 2ir £ x £ 2k, 
then corresponding to an arbitrary t > 0 there is a a such that the 
inequalities 

(4) -2V £ %' £ 2r, -2k £ x" £ 2k, \xf - x"\ < 3 

imply 

W) -/(*") I <e. 

Now choose xf = x, x” = x + /. If 11] < d and — % g x ^ w, then 
surely inequalities (4) are satisfied (assuming as we may that 5 < w). 
Hence, the integrals Ih I2i /a, with x0 replaced by satisfy the same 
inequalities as before. Hence, we can certainly find an integer my 
independent of a: in the interval — x ^ ^ ir such that 

— /(x)| < 3e n > m, —7t ^ i g 7T. 
This completes the proof. 

EXERCISES (6) 
1* Prove Theorem 9, 

2. Prove: 0 x 0, ±2^, ±4r, - • * * 

B 

3. Prove: ^ctn | = V sin kx ((7,1), % ^ 0, ±2jr, ±4rf - - * . 

jt ■= i 

4, Prove by use of the test-ratio test that the following series con¬ 
verges: 

» 
V' A! cos** a 
Z/ r(* + *) o < a < i. 



354 FOURIER SERIES [Ch. Xil S7.t 

5. Prove 
/»/* 

-t/2 
cosSn x dx -> lim COff - =0, 0 < 6. < 3. 

t/2 »-*« Hn 
Hint: Use #483, Peirce's Tables, and Exercise 4. 

6. Prove that, if //„ is defined as in Exercise 5 and if f{x) z C in — « 

< x < , then 
1 f*/s 

77" / /(* + u) COSs" udu = f(x) — <» < X < so. 
i tin J -t/2 

lim 
n—+ « 

7. In Exercise 6, show that the limit is uniform in —w g x £ t. 

8. Prove i/' 
* J -r 

- /(*)]«* = j fl/Wdx 
n 

f-ijl £ + &i>. 
*- t 

9. Prove: f(x) eC, P lim —r 
» (» + fifX*’'01 

+ 6!) = 0. 

Hint: Use Theorem 2, Theorem 12, and Exercise 8. 

§7, Applications 

We shall derive in this section several interesting consequences of 
Fear's theorem. One application is Parseval's theorem, which states 
that the infinite series of Corollary 2 has for its sum 

i j’mdz. 

To prove this, we need to investigate the relation of Fourier series to 
the method of least square approximation. 

7.1 Trigonometric approximation 

Theorem 13. 1. f(x) z C 

2. /(-*) = /<») 

— TT £ X £ TT 

(1) 

There corresponds to every positive e a trigonometric 
polynomial 

n 

T»{x) = 4"° + ^ Ak cos lex + Bh sin kx 

such that 

|T„(x) — /Or) | < e “IT ^ x ^ w. 

For, f(x) can be defined outside the interval (—tt, tt) so as to belong 
to P. Hence, the result follows by Theorem 12* One has only to note 
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that <rn(x) is a function of the form (1) since 
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TT 

**w - IXi - C,M' 
fc-D 

jjf 
Observe that we will not in general be able to take d* = ak and Bk = 
for we have pointed out that in general S„(x) docs not approach f(x), 
much less uniformly, if f(x) is merely continuous. It could be shown 
that, if we added the hypothesis /(a:) t D\ then we could take d* = a*, 
/?* = bk- 

7.2 Weiefstrass‘s theorem on polynomial approximation 

The following application of Fejdr’s theorem was proved by Weier- 
strass in 1885 by other methods. 

Theorem 14. 1. f(x) eC a £ x £ b 

-» There corresponds to every positive t a polynomial 

n 

Pn(x) = ^ Ckx* 
Jt-0 

such that 

|/(x) — PnWI < e a £ x ^ b. 

Make a transformation x = d + d, c ^ 0, which will carry the 
interval (a, [>) into (—tt/2, ir/2), and set 

ff(0 = f(cl + d) -r/2 £ { £ t/2. 

Complete the definition of g{t) in (-t, t) so that it satisfies the condi¬ 
tions of Theorem 13. Then corresponding to the given e of the present 
theorem there exists Tm(i) such that 

(2) 17VC0 - ff(f)l < «/2 

ButTmft) is a sum of trigonometric functions each of which has a Madaurin 
expansion which converges uniformly in any finite interval. Clearly, 
T,„{x) lias a similar expansion. The partial sums of this expansion are 
polynomials which approximate uniformly to Tm(t). That is, there 
exists a polynomial Qn(l) such that 

(3) |T„(l) - Q„(0| < e/2 -t Sfg,. 

Combining inequalities (2) and (3), we have 

IffCO ~ < e -t £ t £ t 
\g{\x - d]/c) - <?„([;£ - d]/c)j < e a £ x £ b 

I/Or) ~ P«(ar)| < « a £ x £ b. 

Pn(x) = Qn([x - d\U). 
where 
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Certainly, Pn(x) is a polynomial of the same degree as 

7.3 Least square approximation 

A function g{xr A, if, C} is said to be a least square approximation 
to f(x) on (af 6) if the parameters A, Bt C are determined in such a way 

that the integral 

j[6 !/(*) - g(x, A, B, OT-dx 

has its smallest possible value. The definition could be extended in 
an obvious way to include functions g of any number of parameters. 
The definition is clearly analogous to one given earlier involving approxi¬ 

mation at a finite number of points. 

Example A. Find the least square approximation by a function of 
the form Ax + B to the function sin x on (0, ir). We 

have to minimize the function 

F(A, B) = Jj {sin x — Ax ~ Bydx. 

Equating the two partial derivatives to zero, we obtain j 

2 (sin x — Ax — B)x dx = 0 

2 Jr* (sin x — Ax — B)dx = 0. 
• 3L| 

The solution of this pair of equations is A = 0, B = I 
2/ir, The graph of the required function is a straight I 
line parallel to the x-axis and a distance 2/ir above it. 

Theorem 15. 1. f(x) e D 
n 

2. T„(x) = -j- ^ A k cos kx ■+• Bk sin kx 

*—i 

(4) -* j’r tf(x) - S«(x)]*dx £ frrlf(x) - TMYdx. 

Here iS„(x) is defined by equation (3), §2. The right-hand side of 
inequality (4) is a function of the (2n + 1) parameters A0, Au Bh • ■ ■ , 
An, Bn. Differentiating partially with respect to each of these and 
equating the result to zero, we have 
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This would conclude the proof if we knew that the minimum existed. 
Conceivably, the point we have found may be a maximum or even a 
saddle-point. Rather than complete the proof by use of second deriva¬ 
tive tests, we give an algebraic proof which is of interest in itself. Clearly, 

(fi) jT_r ff(x) - Tn{x)]"dx = flw [/(x) - Sn(x)\*dx + 

2 flw W*) - S«Wl[>S„(x) - Tn(x)]dx + [Sn(x) ~ Tn(z)]*dx. 

The middle integral on the right is zero by virtue of the orthogonality 
relations and equation (4), §3. That is, the left-hand side is the sum 
of two non-negative terms, and is hence not less than either. This 
completes the proof. 

7.4 Parseval's theorem 

Theorem 16. 1. f(x) t C —v £ x * v 
2./(-r)=/W 

(6) -4 l j' P{x)dx - | + £ al + b* 
Ha 

As we saw in the proof of Bessel's inequality, 

fw r n 
lJW_r m - Sn(x)]*dx. = P(X)dx ~ f ~ £ <4 + H 

r?i 
n = 0, 1, 2, ■ • ■ . 

If t > 0, determine 7*„(x) by Theorem 13. Then by Theorem 15 

l J ^ U{x) - Sn(x)]=dx ^ l J_ \Kx) - Tn{z)Ydx < 2t~. 

That is, for some integer n and a fortiori for any larger n, (al + b\ ^ 0), 

II 

0*1 f /W* ~ f - £ 4 + b| C 2(3. 

2 jT [/tar) — T„(x)] cos kx dx — 0 k = 0, 1, ■ * ■ , n 

2 [/(x) — r„(x)3 sin kx dx = 0 k = 1, 2, * • • , n. 

By use of the orthogonality relations, these equations reduce to 

At *= a* k. = 0, 1, ■ ■ * , n 
Bu — bk k — 1, 2, * * * , a. 

Allowing n to become infinite: 

f ^ * 

0 £ i j[p{x)dx - f - £ «I + VL < 2<5. 

Since t was arbitrary, this implies the equality (0). 
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Corollary 16. 1. f{x), <p(x) e C 

2. f(—ir) =/(*•), v>(—jt) = <p{n) 

o i r 
3- * ";}-, 

*-lL 

u: 

<p(x) cob kx dx 

<p(x) sin kx dx 

— 7T S % S ft 

k = 0, 1, 2, 
k ~ lt 2, ’ 

f(x)<p(x) dx = a-fp + ^ («*cr* + bkPk). 

k » 1 

The proof is easily supplied by expanding the integral 

-1 im - <p{x)Ydx. 
T J-r 

7*5 Uniqueness 

An important question, which we can now answer, is whether a given 
trigonometric series can be the Fourier series of more than one con¬ 
tinuous function. If there were two distinct continuous functions, 
their difference would be a function all of whose Fourier coefficients would 
be zero and this would imply, by the following theorem, that their 
difference is identically zero. Hence, the answer is in the negative* 

Theorem 17, 1, f(x) z C 

2* Jr f(x) cos kx dx — 0 

J f(x) sin kx dx = 0 

-y f(x) = 0 

—ir ^ x ^ w 

k = G, 1, 2, * ■ 

k = 1, 2, * - * 

— 7T S X ^ 7T, 

Let e be an arbitrary positive number. By Theorem 13, determine 
Tn(x) corresponding to it. Then if il/ is the maximum of lf{x) in the 
interval — ^ x ^ x, 

|- Tn(x)]dx\ < 2vMe. 

By hypothesis 2, this inequality is equivalent to 

f* p{x)dx ^ 2trMc* 

Since the left-hand side does not depend on *, it must be zero* Now 
suppose/(xo) t6 0, — 7T < xo < ?r. Since f(x) c C, there is a neighborhood 
of xo, say —'ir <xo — 5^x^xo + 5<tt where p(x) > 0. Hence, 

0 = fr />(*) dx ^ fX,+> P(x) dx > 0. 
J—i Jib—J 

This is a contradiction. Hence, f{x) — 0 in — w < x < x* By con¬ 
tinuity, /O) — /(—t) = 0 also. This completes the proof* 
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Corollary 17* A trigonometric scries cannot he the Fourier series of 
more than one continuous function. 

EXERCISES (7) 

1. Determine the constants e and d used in the proof of Theorem 14. 

2. Show that the Maelaurin series for sin kx or cos kx converges 
uniformly in any Unite interval. 

3. Give the details of the proof that the middle integral on the right- 
hand side of equation (5) is zero* 

4* Find the least square approximation of x2 on (0, 1) by a function 
of the form A + Bx* It is unnecessary to prove the existence of the 
minimum* 

5- Solve the same problem for x3 on (0, I) by A + Bx + Cx\ 

6. Solve the same problem for x on {0, 1) by A + Be1. 

7* Show that if f(x) zC2 in -f ^ the Fourier series of f(x) 
converges uniformly in tlxat interval* By use of Theorems I and 17, 
show that the sum of the series is /(*). 

Hint: Use Exercises II and 12 of §L 

8* Apply Parseval’s theorem to Example D, §1, 

9* Theorem 16 is not applicable to Example A, §1* Show directly 
that the conclusion of the theorem is none the less true* Hence, show 
that the hypotheses are not necessary* 

10. Solve the same problem for Example C, §1. 

11. Prove Corollary 16* 

12. Use Corollary 16 to obtain the value of the integral 

“ J Jx\x2dx. 

Hint: Use #810 and #812 of Peirce's Tables. 

13. Same problem for 

Check by direct integration, 

§8. Fourier Integral 

Tn order for it to be possible that a function should have an expansion 
in a Fourier series, one essential property of the function is its periodicity. 
If a function fails to have this property, it is possible in many cases to 
give it an integral representation analogous to the Fourier series expan- 
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sion. For this representation the function should be defined from — ee to 
+ oo. If it is known only in a finite interval, its definition can be com¬ 
pleted, usually by defining it as zero in the rest of the range. 

8.1 Analogies with Fourier series 

To set forth the analogies between Fourier scries and Fourier integrals, 
we arrange them side by side below. The signs Z and /, the integer k 
and the variable yf the intervals (—x, x) and (— <*t <*) correspond. 

7^ + ^ (a* cos kx + bk sin for) J (a (ft) cos yx + b{y) sin yx)dy 

1 f* 
a(y) = ~ / /(0 cos tydl 

x J — « 

b(y) = - [ f{t) sin iy dt. 
X J — 

If we insert the integral expreasions for a*, 6*, a{y), b(y) into the series 
and integral, we obtain 

it — i / /(/) cos kt dt 
X J <—r 

jt = “ J fit) sin kt dt 

jt—i 

fit) cos k(x — t)dt f(t) cos y(x — t)dL 

These relations make the form of the Fourier integral easy to remember. 
The sum of the Fourier series and the value of the Fourier integral is 
f(x) for a very general class of functions. 

8.2 Definition of a Fourier integral 

Definition 9. The Fourier integral of a function fix) is the iterated 

integral 

1rdy r * Jo J-< 
f(t) cos y(x — i)dL 

There is no question here of the convergence of the integral. Of course, 
we hope to be able to impose conditions on f(x) which will guarantee 
that the integral converges to/{x). 

Example A. fit) — 1, |/| ^ l; f(t) — 0, \t\ > 1. The Fourier inte¬ 
gral of f(x) is 

(cos xy cos iy + sin xy sin ty)dt — u>r, 
2 [* j [1 2 fm sin y 
- I cos xy dy f cos iy dt — - I -— 
* Jo Jo x Jo 

cos xy 
dy. 

By #485 of Peirce's Tables this integral is equal to 
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f(x) except at points of discontinuity, where its value 
is the average of the right-hand and left-hand limits 
of f(x). 

8.3 A preliminary result 

Theorem 18. 1. f(x) t Dl 
2, f{x) z C at x = Xq 

-> lim - [ ' fix* + l) dl = fix,) 0 < M < ». 
j*-> « X J - M t 

Since 

nn, * r . i 

we need only show that 

Urn - f [fix, + 0 “ /Ml ^ dt = 0. 

As in §3.4, hypothesis 1 implies that [/(sq + t) — f(x,)]/t t D. The con¬ 
clusion now follows by Theorem 8. 

Theorem 19. 1. f{x) e D1 

2. J \f(x)\dx < ce 

3. f(x) e C at x = Xo 

(l) -¥ lim - [ f(zo + t) —dl - /(**)- 
R-* « X J - » l 

Let c be an arbitrary positive number. We can determine M so large 
that 

m ir X Jm 
l/(x0 + 01 

dt + 
l f~M 

X J - « 
fix, + 01 dt < 

This is possible by hypothesis 2, Set the integral on the left-hand side 
of equation (I) equal to I(R) and write it as the sum of three integrals 
h(R), h(R)i /a(jffi) corresponding to the three intervals (—oo, — ilf), 
i^M, M)t (Mt <*)* Then by inequality (2) 

I/(B) - /(a*)I <* + iurn -fix,)|. 
Now let B—By Theorem 18, we see that h(R)~*f(xo). 

Hence, 
Em [1(B) - /(x0)[ g € 

"lim /(B) - f(x0). 
« 

This completes the proof of the theorem. 
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8.4 The convergence theorem 

Theorem 20. L f(x) e Dl 

2. J j/(x)|dx < £*> 

3. fix) tC at r — xq 

(3) -> f(x0) - - j dy j f(t) cos y(xo — t)dL 
ftj a j -» 

By the Weierstrass Mutest for integrals, the integral 

/; 
/(/) cos t/(rr0 — £)d£ 

converges uniformly in the interval 0 ^ y ^ R. Hence, we may 
interchange the order of integration in the following integral: 

(4) - f dy f f(t) cos y(x0 — t)dt 
fjo 

= ^ j f(t)dt j^ cos y(xn — i)dy 

-i[‘ m-'faA.ir /<„ + <>-ia®*. 
7T jr ~ w Xfl * £ 7T J _ ® C 

As becomes infinite, the left-hand side of equation (4) approaches 
the Fourier integral of fix) and, by Theorem 19, the right-hand side 
approaches f(x 0), 

8.5 Fourier transform 

In case f(x) is even or odd, equation (3) takes a somewhat simpler 
form as follows: 

m = f(~z) Six) 
2 f 

~ - / cos xy dy j 
n Jo Jq 

cos xy dy I f(t) cos yt di 

is the Fourier cosine transform of f(x). 

Definition 11. A function g(x) defined by the equation 

g(x) = ^ f{i) sin xt dt 

is the Fourier sine transform of f(x). 

fix) - —/(—a) f(x) = - / sin xy dy I f(t) sin yt dt. 
* J 0 Jo 

Definition 10. A function g(x) defined by the equation 

(5) g(x) = f(t) cos xt dt 
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We can now state the following consequence of Theorem 20, 

Corollary 20. If f(x) is an even function satisfying the conditions 
of Theorem 20, then equation (5) defines the Fourier cosine transform g{x) 
of fix) for all x. Moreover f(x) is the Fourier cosine transform of g(x)> 

A similar statement holds for odd functions and Fourier sine trans¬ 
forms. 

Example B. f(x) = e~xi 

«* 
cos xt dt ~ e~*Vi. 

The Fourier cosine transform of crx* is 
According to Corollary 20, we should have 

e~xt = ^ git) cos xi dt = ^ *r(V4 cos xt dif 

and this is also verified by //508, Peirce's Tables. 
Using the Fourier integral, we have 

_ 2 f06 
e^“x = - / cos xy dy / e~{t cos ly dt 

*J 0 Jo 
— < x < 00. 

EXERCISES (8) 
1. By use of the Fourier integral show that 

/; 

y sm xy 

1 + y" 
dy 

' JT 
= - e~x 

2. Prove 

2^ 

f ” cos xy , 7r M 
J, T+J‘d«- S'* 

3. dy J cos y(x — l)dy = ? 

4. j^ cos xy dy J i- cos ly dt = ? 

5. J> sin xy dy j t2 sin ty dt — ? 

* > 0 

x < 0. 

— 00 < X < QO. 

(all x). 

(all x). 

(all *). 

„ f sin 7rt sin Rt n 
6. lim / - dt = ? 

/<-• * J — 1 t3 

r r f1® f. hm / - 
R-> « J 0 ‘ 

sin P.-k 

yfx 
dx = ? 
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8. Find the Fourier cosine transform of /(*) — cos x, |*| < »-; 
/{*) = 0, |j[ > T. 

g f ” ~ a'n wx cos xy dx — f 
'Jo 1 ~ ** (all *) 

Hint: Use Exercise 8. 

10. If hypothesis 3 is omitted in Theorem 20, show that 

/(*.+) +/(*,-) _ i JJdy /(0 «*„(„_ _«,<*<„. 

Mini: Use the function of Example A as the function £(&) was used 
in the proof of Theorem 7, 

CHAPTER XII! 

The Laplace Transform 

§1. Introduction 

hi this chapter, we shall consider theoretic aspects of the Laplace 
transform, reserving for Chapter XIV the application of the subject 
to the solution of linear differential equations. This transform is defined 

by the equation 

(1) f(s) - f0l 
It may be thought of as transforming one class of functions into another. 
Thus, the function p(l) is replaced by the function /($) by use of equation 
(1). The advantage in the operation is that under certain circumstances 
it replaces complicated functions by simpler ones. For example, it 
replaces the transcendental function ^(0 — e”1 by the rational function 
f(x) = (s + l)"1. If we establish rules whereby we can pass easily 
from the class of functions <p(t) to the class of functions f(s) and back 
again, then a problem originally given to us in one of the classes may be 
solved in the other, sometimes much more easily. Of course, for the 
success of such a method it is important that the correspondence between 
two functions of the two classes should be unique. It is clear from 
equation (1) that a given function <p(t) leads to at most one function /(«). 
Later, we shall show that for a given function f{$) there is essentially 
only one function We say ” essentially,” for it is clear that if the 
definition of <p(t) were altered at a finite number of points, f(s) would 
not be changed at alL But we can show that there will be at most one 
continuous function <p{t) corresponding to a given function /(s). It must 
not be supposed that one may set down an arbitrary function in one 
class and expect it to have a mate in the other. For example, if tp(t) = 

then the integral (1) diverges for all s. Again if /(a) — $, there will be 
no function tp(t) corresponding. We will show this later. But even 
now we can see that there can be no absolutely converging integral 
(1) representing s. For if there were such an integral, converging 
absolutely for s — c, we should have 

|s| g jT" \dl 

1*1 ^ f0m C S S < ». 

This is clearly absurd, since s becomes infinite in the range indicated. 
365 
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1.1 Relation to power series 

At first sight, the integral (1) appears to be of a very special nature. 
Although the function e>(0 may be chosen very generally—we insist 
only that the integral should converge for some value of s—the other 
factor of the integrand is indeed of a specific nature. Why should w© 
choose the exponential function rather than any other? The answer 
to this is that the integral (1) may be regarded as a generalization of a 
power series. These series occur in Madaurin’s and in Taylor’s expan¬ 
sions and are of fundamental importance in analysis. We shall now show 
how the Laplace transform may be evolved from a power series. 

Consider the power series 

(2) F(x) = ^ a*sA 
=o 

If it converges at all for x ^ 0, then it converges in an interval, \x\ < h, 
extending equal distances on either side of the origin, and diverges outside 
of the interval. The points x — h and x — —A may or may not be 
included in this interval of convergence depending upon the particular 
sequence {ajJjLo involved. Of course, we may have h = oo, when 
the series (2) converges for all x. Or the series may diverge for all z 
except x = 0. One natural way of generalizing the scries (2) would 
be to replace the sequence of integers which appear as the exponents of 
x by a more general sequence. Let be such a sequence that 

0 ^ X<> < Xi < X* < • * * , lira X* — . 
k—* 

With this sequence as exponents of x, we obtain 

F(x) = J a*#*4. 
fc-0 

But there is now some ambiguity. At least if X* is non-integral, say 
it may not be dear which root of x is the natural one to take. To 

avoid this difficulty, make the change of variable x = e~*\ (x — e* would 
be equally good). We are thus led to the Dinchlet series 

(3) «-1 a*em ,—*%k 

0 

And now it is quite natural to replace the sequence j X* ] J^0 by a continuous 
variable t which ranges from 0 to eo. We would then replace the summa¬ 
tion sign by an integral sign and the sequence lajtSjEU by a function a(i): 

F{er*) = Jy* a(t)e-udL 
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If we replace Ffe-*) by f{s) and o(0 by <p(£), we arrive in way at 
the integral (1). Except then for the unimportant exponential change 
of variable, the Laplace integral (1) may be regarded as a generalized 
power series, the sequence of integral exponents having been replaced 
by a continuous variable in the generalization. 

1,2 Definitions 

We now turn to the formal definition of the transform. 

Definition 1. The function f{$) is the Laplace transform of the 
relation being indicated by 

(4) L{V{1)\ = /<*), 

i—y equation (1) holds, the integral converging for some value of s. 
Equation (4) is sometimes written as 

(5) £~M/(s)} - v®. 

We have already indicated that the relationship between f(s) and <p(t) 
is in some sense one to one; that is, each is essentially determined by the 
other. In equation (4) we think of <p(t) as given and f(s) as determined 
from it. In equation (5) it is f(s) that is given. Accordingly, equation 
(4) defines the direct transform, equation (5)t the inverse transform. 
At present, it is not clear how the inverse operation L~l is to be performed; 
whereas the direct transform L is accomplished by evaluating the improper 
integral (1). 

Definition 2. The function f(s) in equation (1) or in equation f4) is 
the generating function. 

Definition 3. The function ^>(f) in equation (1) or in equation (4) is 
the determining function. 

Example A* L{1} = srl, = l. 

For, if 0 < s < co, we have 

f erH\dt — lim (R(r**dl — lim s^J(i — e~*R) = s~l. 

Here l/s is the generating function, <p(t) — 1 is the 
determining function. Observe that the determining 
function must be defined for 0 £ t < So far as 
Definition (1) is concerned, the generating function 
need be defined only “for some value of s.** But we 
shall see later that, if the integral (1) converges for 
some value of s, it converges for all larger values. 
Hence, the generating function will always be defined 
on some right half-line (or on the whole s-axis). 
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Example B. L(te^) - (a + 1}“* s > -1, 

Here we have indicated at the right of the equation 
the region of convergence of the integral (1) with the 
present determining function for <?[{). The integral 
can be evaluated by integration by parts. 

Example C. If—<w<c<oo,a>—1, 

L{P<r«\ = r(o 4- l)/(s + c)*« s > ~c. 

For, we have 

JQ* e-^Ptr^di = JQ“ e~it+c)‘ (adt, 

and this integral was evaluated in terms of the gamma 
function in Theorem 9, Chapter XI. 

Example D. Find L“l{(«* - By use of partial fractions 
we have 

- 1 2\s-l s -j- 1) 

Here the two integrals Involved converge for s > i 
and s > — 1, Hence, 

Ljsinh t\ = I/($a — 1) s > 1 

L~l {(s'- — I)“* j = sinh t 0 g l < oo. 

EXERCISES (t) 

Find the. following Laplace transforms, indicating the region of convergence 
of the integrals involved. 

1. L{Vi\. 
2. Ljet/Vt|. 

3. Ljsinh ef}. 

4. L\(f“ sinh t}. 

5. Lje0* cosh ct]. 

6. Lje^ sin ct). 

13. L-Ms-’fs5 + 9)~1}. 

7. L j c* cos ct). 

8. L-M 1/Vi). 

9. L~l (s"} a < 0. 

10. L~'\sr'(s + I)"1}. 

11. L-‘js/(s2 + a2)). 

12. L-‘{3/(s2 + 9)). 

14. Prove that the integral (1) diverges for all s if <p(l) = ft*. 

15. Show that no constant except zeio can be a generating function, 
at least if the Laplace integral is to be absolutely convergent at s = 0. 
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Hint: |/(s)j 5 f* \<?(t)\dl + c~,E \<p(t)\dl for any positive numbers 

s and R. Now choose s and It so as to make the right-hand side less 

than the positive constant |/(s)|. 

16. Same problem for any polynomial. 

17, Show that if p(f) is constant in each of the intervals (X*, Xl+1), 
k = 0, 1, 2, ■ ■ • , of §1.1., then sLj^OJ is formally a Dirichlet series. 
Determine the value of <p{t) in each interval if the series is to reduce to 

series (3). 
§2. Region of Convergence 

Since the Laplace integral may be regarded as a generalization of a 
power’series, we can predict in what sort of region that integral is likely 
to converge. Recall that in §1.1 we made the exponential change of 
variable x — e~‘. If x and s are real, this transformation will be useful 
only for half of the interval of convergence of the power series (2), §1.1. 
Since the power series converges for 0 <* < ft, we should expect the 
Dirichlet series (3) and the Laplace integral (1), §1, to converge in the 
interval log (1/ft) < s < ». This assumes, of course, that making the 
sequence of exponents more dense does not affect the type of region of 
convergence. We shall show that this is, in fact, the case; that the Laplace 
integral, if it converges at all, converges on a right half-line or on a whole 

line (corresponding to the case ft = “). 

2.1 Power series 

Before proving the result just stated, let us first recall the proof of 

the corresponding result for power series, 

(1) J 
k-Q 

Theorem A. 1. Series (1) converges atx — Xo^O 

-k Series (I) converges absolutely for |js| < \x$l 

Since the series (JJ converges at x = xo, the general term approaches 

zero, 

(2) lim = 0. 

Now use a limit test for absolute convergence, Theorem 9, Chapter IX. 

We have for \x\ < ]xq| 

(a*4) == 0? 

and the theorem is proved. 
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Corollary A* 1. Series (1) diverges at x — x0 ^ 0 
“4 Series (I) diverges for jx| > |x0[. 

For, by Theorem A, if the series (I) converged for some Xi such 
that \xi\ > |xol then it would converge at every point nearer the origin 
than Xi and lienee at xo, contrary to hypothesis L 

By use of Theorem A and Corollary A, we see that there must he 
some interval of convergence for the power series (1). It may be a 
single point, a finite interval, or the whole x-axis, The three examples 
ak = k 1, = 1, a* = I/Ad show that all three eases actually arise, 

2.2 Convergence theorem 
m 

A strict analogy with power series does not hold in the proof of the next 
theorem, and it is easy to see why. In deriving equation (2) we used 
the fact that the general term of a convergent series tends to zero. We 
know that the integrand of a convergent integral need not tend to zero 
as the independent variable becomes infinite. Iteeall that tp(L) may be 
changed at isolated points without changing f(s) and without affecting 
the convergence properties of the Laplace integral. This fact alone 
would prevent us from trying to establish an equation analogous to (2), 
But an indefinite integral of <p(t) is unchanged if <p(t) is altered at isolated 
points. Hence, we may hope to deal with such an indefinite integral, 
which may probably be introduced by an integration by parts. 

Throughout the remainder of the chapter let us assume, without 
further statement that ^(0 £ C except at isolated points. In particular, 
<p{t) may be discontinuous at t — 0, so that the Laplace integral may be 
improper of Type III as well as of Type I, Any discontinuity inside the 
interval (0, will be assumed to be a finite jump; that is, right-hand 
and left-hand limits will exist. Now consider the Laplace integral 

(3) j[" e-'V(0dt. 

I. Integral (3) converges at s = So 
Integral (3) converges for s > So* 

• 

a(t) = j£*+ e-**utp(u)du 0 < t < w. 

Clearly a(Q+) = 0 and exists by virtue of hypothesis 1, Choose 
c and R so that 0 < e < j?. Integration by parts gives 

fR er**tp(t)dt — e~t*~*Juczr(u)du 

— a(R)e^Mo)R — + (s — So) f e~^*-§*)ua(u)du* 

Now let e —* 0+. Both terms on the right which depend on t approach a 
limit and 

Theorem 1, 

Set 
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(4) fR e^*V(0dt — + (s — $o) /.* e_Cj^)ua(u)dt4. 

Notice that the integral on the right is certainly not improper since 
a{0+) — 0, Now let It —* If s > the first term on the right 
approaches zero and we shall have 

(5) l; e~>tip(l)dt — (s — Sa) e^iM^uce(u)du s > 

if the integral on the right converges. But it does converge absolutely 
as we see by use of a limit test, Theorem 4, Chapter X. For, we have 

Urn ^ 0 - <*(<») = 0, 
«—# as 

This completes the proof of the theorem. It must not be supposed 
that the integral on the left-hand side of equation (5) converges absolutely 
just because the one on the right-hand side does so. 

Corollary 1.1, L Integral (3) diverges at $ — So 
-> Integral (3) diverges for s < 

Corollary 1,2. The region of convergence of the integral (3) is a right 
half-line or a whole line, 

Corollary 1,3. /(+ =©) — 0. 

That is, every generating function vanishes at To show 
this, determine, corresponding to an arbitrary £ > 0, a number d such' 
that ]«(tf)| < € for 0 < i ^ 5. Then from equation (5) we have for 

s > So + 1 

|/0)| ^ c($ - sf) JqA e~iM^dt + (s — e^\ot{l)\dt. 

N ow let s —* + ; 

Hm \f(s)\ £ « 

*” lim f(s) = 0. 

As a consequence of this result, it is dear that, a polynomial which is 
not identically zero cannot be a generating function. 

By virtue of Theorem 1 and Corollary 1,1 three cases may arise: 
(a) the integral (3) converges for all s 
(b) the integral (3) diverges for all s 
(c) there exists a number se such that the integral (3) converges for 

s > sc and diverges for s < sc. 
The number sc is called the abscissa of convergence. Tn case (a) we 

write 8c - — ao and in case (b), se. = + . 
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2,3 Examples 

To show that the three eases of §2.2, which are logically possibly, 
actually occur we exhibit three examples: 

(a) jT e~He~t%dt §c — — 

(b) S0 ~ + 00 

(c) f " e~H dt m Sc — 0. 

The facts here asserted are easily established by use of limit tests. 

Example A. Find sc if <p(t) = {sin l)/t. 

Here we certainly have convergence for s ^ 0 since 
the integral 

rm* 
Jo t 

converges. Hence, g 0. But se = 0. For if we have 
a = — a < 0, the integral (3) becomes 

xH /•(*+!)«• 
y I g(t) sin l dt, 17(0 = d*ft. 

o 

The general term of this series is in absolute value 
greater than 2g(kr). The series cannot converge 
since its general term does not tend to zero. 

This, with example (c) above, show's that the end 
point of the interval of convergence may or may not. 
belong to the region of convergence. In example (c) 
the integral diverges at s = e„; in Example A the 
integral converges at s — se. 

EXERCISES (2) 

Find se in the following cases. 

1. ^(0 — Id” c~l. 

2. = sin t + e*. 

3. tp(t) = cos 2t. 

4. <p(l) = l~v> sin Zt. 

5. <p{l) = cos t. 

11. Prove that, if tp(t) is bounded, then s„ £ 0. 

12. Prove that, if is bounded, then sc g a. 

13. Find sc for examples (a), (b), (c). 

6. <p{t) = (t + 1)“H cosh t. 

7. <p(t) — sin t. 

8. <p(£) = l-M. 

9. ^(f) = t-toe31 sin 3(. 

10. f(s) = (s* - 3s + 2)-'. 
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14. Prove that if the integral (3) converges at s = so > 0, then 

is bounded in the interval 0 < ( < 00 ■ 
Hint: Use equation (4) with s = 0 and use the fact that a{t) is 

bounded, 

15. Pattern a proof of Theorem A (conditional convergence only) 

after that of Theorem L 
Hint: Set 

and show that 

S, 
Jt-0 

n-l 

Y aix* = Sn(x/x*Y + ^ «*(*/**)*( 1 “ b/*o]) 
Jfc-0 *-0 

16. Prove that the region of convergence of a Dirichlet series is a 

right half-line or a whole line. 

17. What is the relation of a determining function <p(t) to the class 
of functions D defined in Chapter XII l 

§3. Absolute and Uniform Convergence 

We saw in §2 that a power series converges absolutely at any point 
inside the interval of convergence (boundary points of the interval 
excluded). The analogous result for the Laplace transform is false. 

The integral 

(i) lol 
need not converge absolutely in any part of its interval of convergence. 
On the other hand, it may in some cases converge absolutely in part or 
in all of that interval. This leads us to define an abscissa of absolute 
convergence. By means of a discussion of the uniform convergence 
properties of the integral (1), we shall show that any generating function 

belongs to C" for s > se. 

3,1 Absolute convergence 

Theorem 2. 1. Integral (1) converges absolutely at s = so 

—-.> Integral (1) converges absolutely for s S: so- 

The proof may be obtained from that of Theorem 1 by replacing 
v(f) by |^(01. However, a much simpler proof is available in the present 
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case. Since 

<2) «r-W01 £ <r«WOI so £ a < *, 
we have our result at once by comparison, Theorem I, Chapter X. 

This result enables us to define an abscissa of absolute convergence, sa. 
The integral (1) will converge absolutely for s > s0j will fail to do so for 
s < sfl) may or may not do so at s = sa. In particular, we may have 

= — oo or sa = +°e. Since absolute convergence implies con¬ 
vergence, it is clear that $e £ sB. The following example will show that 
s0 does not always coincide with gc. 

Example A. <p(l) = c‘ sin e*. Set = u. Then 

The integral converges absolutely for s > 1 by a 
limit test. It converges conditionally for 0 < s £ 1 
and diverges for s = 0. Hence, sfl = 0, e0 = 1. 
By replacing e‘ by in tliis example, we obtain sa = k 
and thus see that s„ and se may differ by any positive 
number. Example (a) of §2 shows that sa may be - ». 

Example B. ^(i) = e*e'' sin e‘‘. 
Here se = 0 and s* = », 

3.2 Uniform convergence 

Theorem 3. X. Integral (1) converges absolutely at s = so 

t Integral (1) converges uniformly for s0 £ s £ R, 
where II is arbitrary. 

Note first that the integral (1) is the sum of an improper integral 
of Type I and an integral of Type III. Inequality (2) is sufficient for 
the application of Wei erst russ’s M-test in either case. 

It can be shown that Theorem 3 remains true if the word “absolutely ” 
is omitted in hypothesis 1. 

3.3 Differentiation of generating functions 

We shall now show that it is always permissible to differentiate a 
Laplace integral under the sign of integration, thus establishing the fact 
that /(s) e C" for a > sc. 

Theorem 4. 1. f(s) = jA er«<p(t)dt 

<3) -* As) = ~ X+ 

Let s = s0 > Sc By equation (5), §2, 

(4) /0) = (s - so) jT * e~(e~3°>'a(t)dt 

«(0 = fQ‘+ u)du 

s > $e 

S > Sc. 

8 > So 

0 < t < oo. 

Ch. Xlll 13.3] THE LAPLACE TRANSFORM 375 

Hence, 

(5) /'(s) = - (8 — so) J0 e-u—,uta(t)dl, 

provided that it is permissible to differentiate the integral (4) under the 
integral sign, But this operation is valid by Theorem 14, Chapter X. 

The integral 

converges uniformly for sn < 8o + * ^ s ^ R, where « and II are arbi¬ 
trary, by Weierstrass’s M-test: 

g e-oi jif o £ l < So + e £ s. 

Here ilf is an upper bound for |a(f)|, which must exist since «(°s) exists. 

Since 

jA e~“t M dl < <*>, 

the integral (4) may be differentiated under the sign of integration in 
the interval (sQ + t, R). On account of the arbitrary nature of t and R, 
the process is valid for s > So. Finally, if we integrate the integral 

(3) by parts, we obtain 

- fQl <r«h{t)dt = - fo"+e-(-‘°”ta'(l)dl 

= fg" a(t)[e-«-'H]'dt s > so. 

If we perform the indicated differentiation, we obtain the right-hand 
side of equation (5). Since So was arbitrary, the proof is complete. 

Corollary 4. f(s) zG** $ > 

We apply the theorem successively and prove by induction that for 

each positive integer k 

/(*>(s)‘= j* <r*((-0M4A s > Sc 

Example C. Find L\t sin ct\. We differentiate with respect to 
s the equation 

—- = [ e'31 sin ctdt s > 0, — co<c<«I 
8' + C* Jo 

and obtain 

L{t sin efi =» 2cs(sa + c3)-’ * > 0, — <* < c < 
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EXERCISES (3) 

Find- sc atid sa in the following cases. 

1* <p{t) = sin L S. ^(0 = sin c™. 

2. <p(t) = f-M sin t. 6, vKO — 

3* vKO = cos L 7. ^(0 — sin e*\ 

4. <p(t) = e** sin e~K 8. Give details in Example B. 

9* Prove: L \<p(t)\ ^ Me**, 0 £ t < <*> »> integral (1) convei'ges 
uniformly in c + e ^ ^ R, where e is positive and li is arbitrary. 

10. Give an example to show that e may not be zero in Exercise 9. 
May vve infer uniform convergence in c < s ^ iS? 

11. Use Theorem 4 to obtain L[th}f k 1, 2, 3, * « * * Check by 
use of the gamma function. 

“•Has-FT?}-' * » 1, 2, 3, • • ■ . 

13-L- iff „.+«•)“' 
A = 1, 2, 3, • ■ • . 

14. L\l sinh l\ = ? 16. e”' sin cf j = ? 

16. L[t3 cos t\ = ? 17. i{(i - = ? 

§4. Operational Properties of the Transform 

Skill in manipulating the Laplace transform will be greatly increased 
by the study of the effect on a given function produced by certain 
elementary operations performed on its mate. We have already observed 
that differentiation of the generating function, f(s), corresponds to the 
multiplication of the determining function, by —f. It is such 
operational considerations which we now take up. 

4.1 Linear operations 

Let 

pW“£|*(0I, 

both integrals converging for s > s0. If a and f> are arbitrary constants, 
then 

L{a<p(t) + = ai|p(OI + bL{g(l) j = af(s) + 6^(s). 

The integral on the left will certainly converge for s > s0 and perhaps 
in a larger region. These facts are evident from the definition of the 
transform. Obviously, 

I-'{af(s) + = aL-'(/(s)} + = av(t) + &*(<)■ 
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4.2 Linear change of variable 

If o > 0, vve have by setting l = an 

(1) /(s) = jT" e—‘v{l)dt = a s > s*. 

whence 

(2) L{P(«0} - s > s«, c > 0. 

If ^>(t) = 0 for — 00 < l < 0, we have for b > 0 

fo* <r*V(( - b)di = tr4* c-V(u)du = e~>" e~“v(t)dt s > se. 

Consequently, for b > 0 and *p{t) = 0 in (— «>, 0) 

(3) L\*(t - 6)1 - e-*L\<p{t)\ - s > 

us next make corresponding changes of variable in the generating 

function. We obtain easily 

f(as) = L v j a > 0, s > se, 

f(s — b) — LlePipit)) ~ «> < b < <*. 

In the latter equation we must have s > s„ + b since /(s) is defined for 

s > Sc only. 

4.3 Differentiation 

We have already seen that 

/'{«) = —L\tf>{t)\ S > 8e. 

Let us investigate next the effect of differentiating the determining 

function. 

Theorem 6. 1. <p{i) e C 
2. /(s) = L[v(t)J 
3. lim er“<p(t) = 0 

I—►+ » 

—> Lw®} = -m + sf(s) 

0 £ t < °© 
8 > Sc 
8 ^ Sc 

s > 

The theorem implies that the integral on the left converges for $ > se. 
The proof follows from an integration by parts. 

Corollary 6. 1. vKO * C* 0 ^ i < 

2, /00 = HvWI 8 $e 

3* Urn = 0 fc = 0flf***fn-“l;8>ae 
I—*4- « 

n 

—t L[^*’(01 - - J ^•'u(0)s°^ + s"M^(0L 
Jt—1 
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4.4 Intesration 

Theorem 6. 1. /{a) = L\<p(t)} 

2, Iim e~“ [‘ <p(u)du = 0 
f—* « /G + 

8 > 8C 

8 > 8C 

For, set 

Then 

/(s) 

/(s) = ^(w)duj 

«(0 = <p(u)du 

- /„; +* /„' 

8 > sc 

0 <t< 00. 

8 > s„, 

from which the theorem is evident. It can be shown by use of exercise 
14, §2, that hypothesis 2 is redundant if ac > 0. It is not so if ae < 0, 
as may be seen by taking <p{l) = e~'. 

Theorem 7. 1. f(s) = L\<p{t) } 

2. r 
J o+ ( 

s > «„ 

/. f(x)dx = L\v{t)/t) 8 > S0. 

Choose so > s0 and R > s0. Since the integraJ (1) convenes abso¬ 
lutely at s = Soj then by Theorem 3 it converges uniformly in so = s £ R. 
Hence, 

(4) 

f f(x)dx - f <p(t)dl f e-^dx = f <p(t) — e~ltl]t~1dl. 
Ji# J o+ J J 0+ 

= f ~ e-«dt - f vfp. e~mdt. 
J o+ t J 0+ l 

Both integrals on the right of equation (4} converge absolutely. By 
Corollary 1.3 the second of these tends to zero as R so, since s0 
was arbitrary, the proof is complete. 

4.5 Illustrations 

ExAstPLE A. Verify equation (2) for the special case <p{l) = sin t 
f(s) = (a2 + 1)-'. We have 

L\v(al)} = L[sin at) = f - 
s- -j- a3 

Example B. Find L[cos l\ from the equation 

1 1 
a 1 + (s/a)2 

Lisin 11 = (a3 -f- 1)-*. 
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Take <p{t) = sin t in Theorem 5. Then s= = 0 and 

Iim e-" sin t ■*= 0 s > 0. 
i—*+ V 

Hence, 

LWm\ = -Mcos l\ — sLjsin t\ — s(st + l)~l. 

Example! C. Apply Theorem 7 to the case <p(t) — sin t Here 
$a — s* — 0, and 

[% |sin t\ j, ^ 
I - , 1 at < <x>* 

Jo t 
Hence, 

[sin 11 

tan-I- I. a > 0. 

EXERCISES (4) 

1. Show that L[f + gi may have a smaller abscissa of convergence 

than L[/} or L\g). 

2. Expand L (ip(at + b) j, a > 0. What assumptions are you making 

about ip(t)7 

3. Show that 

L"1I/(oa) j = i L“l i/(s)) U 3 > s„ a > 0. 

Illustrate by /(s) = (s — I)-1. 

4. Expand L~l j/(as + b)\,a >0. Illustrate by /(a) = (a + l)-a. 

6. Prove Theorem 5. 

6. Prove Corollary 5 by induction. 

7. Prove: 1. #>(() e C* 0 < t < « 

2. converges 

3. Jo“ e~^<p'(l)dt converges 

-§ lim <p(Q and lim e^*V(0 exist. 
H+ ** 

8. If ss < 0 in Theorem 6, show that /(0) = 0. Illustrate by 
^(i) = (1 — t)c~*. If <p{l) = e~‘ then st < 0; why does not L\e~‘\ 

vanish at a — 0? 

9. Give details in the proof that the integrals (4) converge absolutely. 

10. Find L{sin t] by use of Corollary 5. 

11. Solve the same problem for L (cos at}. 
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12, Solve the same problem for ijsinli at] and Ljcosh at}. 

13, Apply Theorem 7 to <p{t) ~ 1 — cos L 

14, Solve the same problem for tp(t) — ! — e*, 

16. - <P)t-ldl = ? 

§5. Resultant 

One important and fundamental operation on generating functions 
was not discussed in the preceding section. Let us inquire if the product 
of two generating functions will be itself a generating function and if so 
what the relation between the corresponding determining functions 
will be. 

5.1 Definition of resultant 

Definition 4. The resultant of two determining functions <p(t) and $(1) is 

w(0 — / — u)du = <p + *L Q <t < *. 
J 0+ 

(1) 

Other terms sometimes used for ^(0 are convolution and fallung, 
the latter term being taken directly from German. 

Example A. Find t * sin t. Equation (1) becomes 

l * sin i = J u sin (J — u)du — t — sin l 

0 < i < so. 

Observe that <p * ^ since the change of 
variable t — u — y gives 

r 
Jo 

<p(u)t(t — u)du = f <p(i — y)4r(y)dy. 
0+ J 0+ 

Example B. Find f-M * Here 

"(1) ■ L ‘ L “‘“(1 - vyKiu 
= 4) = IT. 

This example shows that the resultant of two variable 
functions may be a constant. 

5.2 Product of generating functions 

Theorem 8. I. /(s) = L {<p{l)} converges absolutely at s = a 
2. g{a) — Lfif'(O) converges absolutely at a = a 

-► = L[tp * ^ j s ^ a. 

Let F> a. Set 
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I(R) = jf * eru<p{t)(h ff+ c-buip(u)du ~ j js e-*c‘+“V (*¥(“)<& du> 

where the double integral is extended over the square S of Figure 40. 
Consider the double integrals of the same 
integrand over the triangles Tx and TV 
Clearly, 

1/ /rj 4 hi 
jT ‘ e~l,u\\p(u)\du 

- 

j™ e“4“|^(w)|du. 

(0.2R) 

(2R,0) 
Hence, the double integral over 1\ ap- 
proaches zero as R —> + 00 * The same 
is true of the integral over TV U T — 5 + Th + TV we have 

Fig. 40. 

lim / f - lim f [= lim I(R) = f(b) g(b). 
/ JT R-*+« J J8 

But 

/ It “ foT‘ 
= j™ <p(t)dt j™ e-*4>{y - t)dy 

= J** tr*dy JQJ+ ~ Qdt = Jo+ e-b»u(y)dy. 

Now letting R —» + «> we have the desired result, since b was arbitrary. 

Example C. By Theorem 8 and Example A we should have 

L(() • Ljsin t\ - L\t - sin (} s > 0. 

But this is 

1 1 _ 1 1 
s2 s- + 1 s2 s* + 1 

Example D. By use of Example B we should have 
L\t~*\ • L\t~*j s > 0. 

But this is 

%Ar/s \/rr/s — t/s. 

5.3 Application 
We may use Theorem 8 to prove the following modified form of 

Theorem 6. 

Theorem 6*. 1. /(s) = L\<p(,l)\ s > s„ 

-». /(a) = sL | L <p(u)du} s > sa, s > 0. 
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Notice that hypothesis 2 of Theorem 6 is now missing. On the other 
hand, we are now assuming an abscissa of absolute convergence. The 
proof is immediate if we set >f(t) = 1 in Theorem 8. Then g(s) = 1/s and 

1 * v(0 = f*+ <p{u)du. 

Example E. Take <p(l) = f>{i) = sin ai in Theorem 8. Then 

sin at * sin at = ^ (sin at - al cos at) 

(2) 
(s1 

o® - I sin at 
8 + o®)® “ h \~2T 

t cos at 
2 

— 00 < a < oo ; s > 0. 

Example F. Take = sin at, m = cos at. Then 

(3) 
(s4 + a3)4 L{2aSma() 

— oe < a < oo; s > 0. 

EXERCISES (5) 
1. In the proof of Theorem 8 show that 

ilm. / k - °- 

2, Give the details in the computation of the resultants of Examples 
E and R 

3* Verify equation (3) by use of Theorem 4, 

4, Take p{t) = ${t) — cos at in Theorem 8 and thus obtain 

+ a*)-aj. 

6. Compute the transform of Exercise 4 by means of partial fractions. 

6, Show that p * * x) ~ (p * * x- It may be assumed that 
all integrals involved are proper, 

7. Is it true that p *$x ~ p$ + xl 
8* Do Exercise 7 if ^ is a constant. 
9. Is p * + x) = (p * + (p * x)? 

10, Prove that if <p{t)y ${t) eC'inOStC oo ? then 

| im * m\ - mm + wm * 

W(01 = sf(s) g(s). 
What are you assuming about the convergence of the Laplace integrals 
involved? 
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11. Set <rfl(0 = o ,t<a; <ra{t) = 1, t > a. Prove 
ff.co«m = 0 0 < t < a 

= J*~* v(u)du t > a. 

12. LMOI - ? o>0- 

13. L-He—try(s)} = ? 

14. Verify Theorem 8 in the special case <p(t) = ta, m - ib; a, 

b > -1. 

16. Solve the same problem for <p(t) = e~\ — l. 

16. Lr1 | S~3(ss + l)“‘t = ? 

! 1 8 
17. L~x = ? 

|s3 (s4 + l)4 

18. Use equations (2) and (3) to find L-!{(® — s4)(sa + 1)“*} 

(Two ways). 

(Two ways). 

§6. Tables of Transforms 

For the practical use of Laplace transforms in the solution of differ¬ 
ential equations it is convenient to have a table of transforms. We 
append a brief table at the end of this chapter. T t will be found adequate 
for the solution of the problems of the present text. More extensive 
tables are available and should be used if a great number of differential 
equations are to be solved. In the present section we shall derive a few 
of the transforms, especially (hose involving nonelementary integrals. 

6.1 Some new functions 

Many functions, such as e~‘/x have indefinite integrals which cannot 
be expressed by use of a finite number of the elementary functions. 
Many of these integrals occur so frequently that they have been given 
names and have been tabulated as new functions. We define a few of 

them. 

Definition 5. 

Definition 6. 

Definition 7. 

Definition 8. 

EI (i) - ]‘j-<» 

sm-('Up* 

Cl(x) = fm'2pdt 

erf (:t) = 4= r e~ttdi 
Vt J o 

0 < X < oo, 

— 00 < X < oo. 

0 < X < oo. 

— 00 < X < to . 

Definition 9. U(®) - J (*"«-*)<"> n = 0,1, • ■ • ; - oo < ® < oo. 

The function EI(x) is called the exponential integral; SI(x) is the 
sine integral; CI(x) is the cosine integral; erf (x) is the error function; 
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Ln(i) is the Laguerre polynomial of degree n. Let us develop a few of the 
properties of these functions, which we shall need in the computation 
of their Laplace transforms. 

Note that EI(0+) — -f- «. But for any positive number l 

(1) 

Also 

(2) 

In a similar way, 

(3) 

lim x1 f ~ dt = 0. 
x iQ«f- J j t 

lim x e* I ^—dt= 1. 
JC-++ *0 Jx t 

Jim a:1 CI(s) = 0. 
*-KH- 

Integration by parts gives 

(4) 

and 

(5) 

Cl(x) = sin x cosx „ f * cos ( 
^ I j L * ■ i« dt 
X X* }t 

dt ]_ 
x- 

0 < X < 03, 

0 < X < os. 

Equation (4) and inequality (5) show the behavior of CI(z) at x = + os. 
Note that SI(0) = x/2 and erf (+ =o) = l. Finally, we observe that 

Ln(a;) is, as its name implies, a polynomial of degree n. The derivative 
of order n of the function xne~* is clearly a polynomial of degree n multi¬ 
plied by «r» The usefulness of these polynomials results chiefly from 
their orthogonality properties: 

(b) Jq c-*L,,(a:}Lm(a:)dx — 0 m ^ n 

(T) =1 m = n. 

6.2 Transforms of the functions 

Example A. Find L{EI(i)} = /(«). By equations (1) and (2) the 
integral 

fol e-mw 
converges for s > — 1 and diverges for s — — lf so 
that * sa = — l. Integration by parts gives 

Sol e~“l - - S0l «^*(i - stmwt 
— 1 < 8 < co 

fol a-TUf = M + sm. 
Accordingly, f(s) satisfies the differential equation 
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(8) 

- ,-h; 

s/(s) = log (s + 1) -}- C, 

where C is a constant. By setting s = 0 we see that 
C = 0. Consequently, f(s) = s-1 log (s + 1). This 
is formula 13 of the table. 

Example B. Find L(SI(f)j. By Example C, §4, and Theorem 6, 
we have 

= «— tan-1 r- — - tan"1 s 0 <«<«>. 

Example C* Find L jCI(O ) = /($). As in Example A, we have by 
equations (3), (4) and inequality (5) that 

/co) - r ci to* 
/ o+ 

Then 

M + sf(s) = fo+ cos t dt = 

s/(s) « £ log (6s + 1) + C. 

The constant of integration C is again zero and 

L{CI(f» = ^ log (s2 + 1) 0 < s < *. 

Example D* Find L[erf v^S■ By Theorem 8 we have 

MpH1*^)} 0<8<" 
1 * 

Hence, 
(75) 

L(erf{V7)l = s-’(s + 1)”» se = sa = 0. 

Example E. Find L{L„(<)}. We have by Theorem 5 * 

j* = (s - 1) jf °dt 

= (s - l)n 

= (a — ljMls-*-1 0 < s < os. 

/ 
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Consequently, 

UMOI = ij~£ s0 = sa = o. 

EXERCISES (6) 
1. Prove equation (1). 

2. Prove equation (2). 

3. Prove equation (3). 

4. Prove that, if P(r) is a polynomial of degree less than n, 

Ju" e~-’P(x)Ln(z)dx = 0. 
i’rove equation (0). 

6. Prove L„(0) = 1 and lim ar*L„(;e) = ( —l)"/n!. 
JE*—► « 

6. Prove equation (7). 

7. Prove that the integral Z/{£I(rf)J converges uniformly in the 
interval 0 ^ s 5 1. 

8. Prove that the integral (8) converges. 

9. Prove formula number 8 of the table. 

Hint: Differentiate formula number 1 with respect to a. Then set 
o = c = 0. The validity of differentiation under the integral sign 

- need not be verified. 

10, Prove that Ir1{= ^erf Vt 

11- Prove that £-1{s^(s — l}"1} =-j= + ^erf (v^), 
V?r£ 

12, Prove that Lr1 {(log s)(b - a}'1} = e* Pog a + El (a/)], a > 0. 

13, Prove that LjLfe^J} = e*EI($), 

14, If erfc (x) — 1 — erf (x), find Lfe* erfo (V5)}. 

§7, Uniqueness 

We come next to tiro important problem of uniqueness mentioned in 
§1. We shall show that a given generating function cannot have more 
than one continuous determining function. 

7,1 A preliminary result 

We prove first the following result. 

Theorem 9. 1, <*(£} z C 0 ^ i ^ 1 

2. |o‘ t»a{l)dt => 0 n a* 0, 1, 2, * * * 

«(i) =« o o <. t % i. 
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For, by Theorem 14, Chapter XII, there corresponds to an arbitrary 
e > 0 a polynomial P(() such that 

(1) [«(() - p(0l < * 0 g t § l. 

By hypothesis 2 we have 

|o‘ aHj)dl = fQl a(t)[a(i) - P{t)]dt. 

By inequality (1) 

jQl a"(t)dl £ e f0l \a(t)\di. 

That is, 

r = fl¬ 

it follows as in the proof of Theorem 11, Chapter XII, that «(() = 0. 

7.2 The principal result 

Theorem 10. 1. <p(t)tC 0 < t < <* 
2. f{s) = L{v(l)\ s> s* 
3. /(So + nl) = 0 for some l > 0 n = 0, 1, 2, • - • 

(2) 

<p(i) - 0 

e~‘,atp(u)du. 

0 < t < ». 

Then by hypothesis 3, n ~ 0, a{50) — 0. By integration by parts 

we obtain 

/(So + nl) = nl e~nl,a(t)dt = 0 n = 1, 2, ■ • ■ . 

Now if we set e~lt = ut this becomes 

jo un l<x 0 log = 0 
n = 1, 2, ■ 

If we define the function a to be zero at it — 0 and at u = 1, it becomes 
continuous in the closed interval 0 £ it % 1. By Theorem 9 it is iden¬ 

tically zero. Hence, 
a'(0 = e-*v(t) = o o < t < «, 

and the theorem is proved. 

Corollary 10.1. If a generating function vanishes at an infinite set of 

points in arithmetic progression, it is identically zero. 

Corollary 10.2. A generating function cannot have more than one con¬ 

tinuous determining function. 



388 ICh. XIII 57.2 THE LAPLACE TRANSFORM 

For, if v>, t C and 

, m -lm, 
then 

L[<p — =0. 
By Theorem 10, ip ^ if'- 

Notice that hypothesis 1 can be relaxed. If <p(t) is any determining 
function of the type admitted in §2.2. and if hypotheses 2 and 3 are 
satisfied, then /(s) is still identically zero. For, a{t) will still be a con¬ 
tinuous function and hence identically zero. 1 Ienee, 

/(«) = (s - So) f0” e-t—0‘a{l)dl = 0 S > st. 

It is only by virtue of this uniqueness theorem that the use of tables of 
transforms is justified. For example, let it be required to find the function 
L~l(0 + 1 )_1}. We know that L{erf! = (a + 1)“‘. By Corollary 10.2 
there is only one continuous determining function corresponding to 
(s + 1)~‘. Hence, 1 {(s + 1)-Ij is e~‘. 

EXERCISES (7) 
1. Show that Theorem 9 holds if the interval (0, 1) is replaced by an 

arbitrary finite interval. 

2. Prove that 

(x2 + 2x + 2)(x* - 2x + 2) - x* = 4. 

Hence, show that every fourth coefficient in the Maclaurin expansion 
of 4(xa + 2x + 2)-1 is zero. 

3. Show that 

1 
dx*n+i x2 + 1 !_i 

= 0 n = 0, 1, 2, ■ • • . 

Hint: The Taylor expansion of (x- + l)-‘ about the point x = 1 can 
be had from the Maclaurin expansion of Exercise 2 by a change of 
variable. 

4. Prove that 

JQ e-,((*n+3) sin f dt = 0 n — 0, 1, 2, * • ■ 

Hint: Express (s2 + t)-t as a I>aplacc integral and compute thereby 
its successive derivatives at s = 1. 

6. Show that Theorem 9 is no longer valid if the interval (0, 1) is 
replaced by (0, w). 

Hint: Make the change of variable t* — u in Exercise 4. 

6. Use the table of transform to find L~l 7 f (s8 + s)-1}. 

7. L-‘[s-l(s= - 1)-*} = ? 

Ch. XIII J8,i 1 THE LAPLACE TRANSFORM 389 

8. L-'lfa5 - l)(s2 + I)-2) = ? 

9. L-1 {(a* + 2s + 2)-3j = ? 

10. £-«{«(»* + 2s + 2)-2l = ? 

§8. Inversion 

Thus far we have been obliged to evaluate the inverse Laplace trans¬ 
form L~l j/(s) j by reducing /(s) to some combination of function each of 
which can be recognized, by tables or otherwise, as the direct transform 
of some known determining function. There are, however, several direct 
formulas for computing <p(t) from /(s). The one of these discovered 
first involves a knowledge of /(s) for values of s which are not real. 
We shall give here another formula which depends only on /(s) for real s. 

8.1 Preliminary results 

We begin with the definition of an operator which we shall denote by 
L-1[f(s)j. The notation differs from that of the inverse transform defined 
in §1 only in the use of a square bracket- rather than the brace. We shall 
see that it is an explicit inversion of the Laplace transform. 

(1) Definition 10. = Jim {^~SW (f) (j) +’. 

Observe that the operator is applicable to such functions/(s) which 
belong to C* for all s greater than some constant (which may be arbi¬ 
trarily large since k/i becomes infinite with k). The function f(s) must 
also be of such a nature that the limit (1) exists. 

Example A, Lrl [s] = 0, For all the derivatives of s beyond 
the first are zero. This example shows that L^Lfl 
may exist when does not. 

Example ZrM = lim ( i + 
k—* «j \ 

Note that £{*} — s~2 as predicted* Observe that the 
simplest procedure for the computation of L_1[/(s)] 
is to begin by calculating (— l)kfiki(s)sP+l and then 
to set s ~ k/t 

i)i-l 
0 <t< 00. 

Lemma 11.1. 
A;**1 f* 
k\ J o 

(e-un)*(f« = 1 k=l,2, 

This is immediate by use of F(a;). 

ju+1 
Lemma 11.2. lim -yy (e^a)* = 0 a ^ 1. 

*-» m K1 

Set the function of k whose limit we wish to evaluate equal to ut. 
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Then 

~ = e“°a{l + 

(2) lim = el~*a. 

We see geometrically or by use of the law of the mean that 

so that 
0* > 1 + x 

e°-’ > a 

sc 0, 

fl 1* 

Hence, the limit (2) is less than 1. Therefore, by the ratio test w* is 
the general term of a convergent scries and consequently tends to zero 
with 1 /k. 

8.2 The inversion formula 

Theorem 11. 1. «»(£) c C 

2. /(s) =L (KOI 

—4 L-'U(8)) = <p(t) 
By Theorem 4 

0 < t < » 
s > sa 

0 < t < «. 

(3) 

L-'m) = Jjm jj (jf1 jo” e~t't,,u<p(u)du t> 0, £ > s0 

f* 
= lim -r-p / (er*u)k<p{ut)du. 

k! j o + 

It will be sufficient to prove that this limit is <p(l) when t = 1. For, 
if to 7* 1 we can replace <p(ul) by \p(u) = <p{utt). Then, applying the 
result assumed proved, we get for the limit (3) i£(l) = Hence, 
we set l = 1 in the integral (3). By Lemma 11.1 it is clear that we need 
only prove that 

jfc.t+i f“ 
(4) lim ~ (e~»u)kMu) - <p{l)]du = 0. 

k-* ^ 1 J 04* 

Now let t be an arbitrary positive number. Choose numbers a and 
b so near to 1 (0 < a < 1, 1 < b < oo) that 

(5) |v(«) — ^(1)| < « a § « £ 6. 

This is possible since <peC at u= 1. Now write the integral (4) as 
the sum of three others, h, /*, 13 corresponding, respectively, to the 
intervals (0, a), (a, b), (b, °°). 
Now by Lemma 11.1 and inequality (5) we have 

\h\ ^ r 
- k\ ja 

(e-*u)k edu < e k = 1, 2, ■ • • 
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Since e~“u t | in (0, a) it follows that 

W * <«-“>* tt L 
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kCu) — so(l)|du. 

By Lemma 11.2 this tends to zero when k 
in (£>, «) we see that 

so. Finally, since e~“u c 1 

(6) 
it*+i f ■ 

\h\ ^ -jy e-^’lviu) - *>(0)|du k > k0, 

where ka is a positive integer greater than sa. It is clear that the integral 
on the right, of inequality (6) converges. By Lemma 11.2 we see that h 
also tends to zero with 1 /k. Hence, 

*p— kk~' 
km -py 
*-*- k\ /' - «>(1 )]du S lim (]7i| + |J,I + |/(|) 

k—+ *> 

* «, 
so that the theorem is proved. 

Example C. Show thatL”1^ + l)'1] = er*. Simple computations 
give 

L“‘[Cs + I)"1] = Um + 0 = e~< 0 < t < «. 

EXERCISES (8) 

1. L~'[<r*] = ? 0 < t, t * 1. 

2. What can be said of the limit of Exercise 1 when 1=1? 

3. Prove Lemma 11.2 by use of Stirling’s formula. 

4. L-'[(s + a)-'] = ? 

6. L-'Is-"] = ? n = l, 2, ■ ■ • . 

6. Show »-» 4 = 0, 1, ••• . 

Then compute L-1[irw}. Stirling's formula, 

V(x + 1) ~ (x/e)* \Z2ttx x -f oo, 

may be assumed to hold for non-integral x, 

7. Prove that, if L{^{0! converges absolutely for s > the same 
is true for L{(V(*)h fc - 1, 2f * ■ • . Hence, show that the integral on 
the right of equation (6) converges absolutely. 

8. L_I [polynomial] — ? 

9- Is it true that L\L~l[/($}] 1 = f(s) for every /(s) for which the 
operators are defined? 
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10, Is it true that, if L~l[/(s)] and L_1[^(s)] both exist and are con¬ 
tinuous and equal for 0 < t < eo, then f(s) is equal to g(s)? 

1L Under the conditions of Theorem 11, prove that. 

lim 
so ft * *"f+c 

= <p(t) —CO <c< oe,0</< 

Hint: L[f(s + C)\ = e-^vit). 

12. Prove that 

lim sr t—.« fcl Jo 
(tr-“w)fcdu — 

0 < a < 1 

1 < a < =o. 

13. Prove that L~l[af(s) + bff($)] = a L 1 [/(-s)] + b L %(«)]. What 
are you assuming about f(s) and g(s) ? 

14. Prove that L-1[/(aa)] — 

assuming about/(«)? 
t/a 

a > 0. What are you 

§9. Representation 

We have seen that not all functions arc generating functions. Cer¬ 
tainly, a generating function must belong to C" and vanish at a = + °o. 
But all functions with these properties are not generating functions. 
For example, s-1 sin s is not the Laplace transform of any determining 
function since it vanishes at infinitely many points in arithmetic progres¬ 
sion. The problem of characterizing completely the class of all generating 
functions is a very difficult one. Here we shall develop only a few 
elementary but useful sufficient conditions. 

9.1 Rational functions 

Theorem 12. 1. R(s) is rational 
2. fl(oo) = 0 

-► R(s) is a generating function. 
The function 1?($) is the ratio of two polynomials. The degree of the 

denominator is greater than that of the numerator by hypothesis 2. 
By the theory of partial fractions, li(s) is a finite sum of functions of 

the form 

(1) 
A B{s-b)+C 

(S - <!)“' [(S - ft)1 + CT’ 

where a, b, c, A, B, C are real constants and m, n are positive integers. 
But both the functions (l) arc. generating functions. The first appears 

as formula 1 in the table. If m = 1, the proof is concluded by use of 
formulas 2 and 3 of the table. If m > 1, we have only to observe that 
the product of a finite number of generating functions (s« < °°) is itself 
a generating function in order to conclude the proof. 
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9.2 Power series in 1/s 

Another very important class of generating functions consists of 
functions which can be expanded in a convergent series of powers of 
1 /a, the constant term being zero. 

*4 

Theorem 13. 1. /(s) = ^ 

M 

(2) 

m = lmo) 

s > r 
* 

Sa ^ r 

OSK <®. 

It -0 

(3) 

Let So be an arbitrary number > r. Then by Theorem A, §2, we have 

t&<- 
fc-0 

Since the general term of series (3) approaches zero as , there must 
exist a constant M such that 

\AhI < ikfs*+* k = 0, 1, 2, 

Hence, the series (2) converges uniformly in 0 ^ t ^ R for any R > 0, 
Consequently, 

m 
fR 

(4) /: 
for any real s, In like manner, 

k~ o 

e~*‘tkdl 

(5) /v-moi*s 
Jt-Q Jfc-0 

8 > So, 

so that the integral L\tp(t)} converges absolutely for s > a* Hence, 
Sa S r, Let n be a positive integer. Then from equation (4) 

/; mw - £ $ /; erw| s £ M $ > Sn- — ) tt f er*Hkdt 

*-b ~ " *-n4-1 

The left-hand side of this inequality tends to a limit as R —* so that 

‘l i:- 
-1 «fer 

8 > 
k-Q fi+1 

Since the right-hand side of this inequality tends to zero as n —> oc t the 
theorem is proved. 
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9.3 Illustrations 

Example A. Find Zrl|(s - l)“l) by Theorem 13. We have 

1 =r + 4 + r,+ ’*- * > 1. S — 1 S s- ” 

Hence, scries (2) becomes 

i“M(* — D-ll = v(t) = Y~ = «*. 

k-0 
Here s0 = r = 1. 

Example B. Find L-‘{(s2 + l)~li by-Theorem 13. In this case, 

1 

so that 

_= i_i, i 
+ 1 sa s*^ s6 

s > 1, 

11 l* 
v(t) ~ l - g| -I- - • • * = sin t. 

In the present example s« = 0 < r. 

Example C. Find The series expansion is 

Hence, 
k~iI 

(-1)* 1 
A! ■*+»’ 

¥>(i) = y^ Lf k 
*-o 

A! A!' 

This function can be expressed in terms of a Bessel's 
function, which we now define. The Bessel’s function 
of order n is 

~ *!<*"+»)I (l) 
I--0 

Clearly, 

2k+n 

n = 0, 1, 2, 

<pto — 110(2 viy 
EXERCISES (9) 

1. L-*{s(s* + !)->} - ? 

2. L~M(s2+ 1)“*| « ? 

3. Prove that L_1{{s — 1)(2s2 + + I)~3] is equal to the 
12 t l 

function - ^ + t + ^ (sin t - cos <) - ^ sin t. 
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4. Give details of the proof that series (2) converges uniformly in 
0 £ t g /e. 

6. Give details of the proof of inequalities (5). 

6. Under the hypotheses of Theorem 13, show that /(s)/Vs is a 
generating function. 

7. Solve the same problem for Vs/{«). 

8. Solve the same problem for spf(s), — « < p < 1. 

9. Find L~l | log (l + by Theorem 13. Answer: fl(l — er‘). 

10. Solve the same problem for tan-1 (1/s). 

11. Prove L|Jo(0i = (a* + 1)“» 

12. Prove L\Ji{t)\ — (Vs2 + 1 — s)/\/s7 + 1. 

§10. Related Transforms 

We conclude this chapter by brief mention of several other transforms 
which are closely related to the Laplace transform. We shall make no 
attempt to develop the general theory of these transforms. 

10,1 The bilateral Laplace transform 

The integral 

(1) m - f \ <r«<p(t)dt 

is called the bilateral Laplace transform, It is easy to see what the region 
of convergence of such an integral is. For, we have 

(2) /(s) = ff e-WW + ff e~M0dt. 

The first of these integrals converges on a right haif-line. The second 
integral becomes by the change of variable t — —n 

J ^ 0"V( —u)dut 

and the latter integral is an ordinary Laplace integral, sometimes called 
unilateral^ in which $ has been replaced by — s. Consequently, its 
region of convergence is a loft half-line. The common part of the two 
half-lines of convergence of the integrals (2) will be the region of con¬ 
vergence of the integral (1). Accordingly, it will in general be a finite 
interval but may be a right half-line, a left half-line, the whole s-axis, 
or a single point* 

Example A, Express (s3 + s)~l as a bilateral Laplace integral. 
We have 
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(3) 

(4) 

1 
8(S + 1) 

1 
S + 1 

1_1_ 
S 8 + 1* 

/; 
/; 
/: 

e-" e~‘dt 

e~“ dt = 

<r" (-l)dt 

s > -I, 

e“dl s > 0 

s < 0. 

Hence, <p{l) — — e~‘, when 0 < t < o°; <p(t) = — 1 
when — co < l < 0; the interval of convergence is seen 
to be — 1 < s < 0. 

Note that this function can also be expressed as a 
lull lateral Laplace integral of either of the types (2). 

^TTT) = L ^(1 “ ^)di S>Q 

= j e~,t(e-t — 1 )dt a < — L 

Let us determine formally what the form of the 
bilateral resultant should be. Let /(s) be defined by 
equation (1) and let 

e~,lp{l)dt. 

Then, if the chan'ge of order of integration is valid, 
we have 

/(»)»(«) = e-*«+“VC M(u)du 

- j_ ^ M j_ " - t)dy 

~ j ^ <r‘^{y)dy, 

where 

u(y) = j_ vifyKv - t)dt. 

It can be shown, somewhat as was done in §5, that 
the above formal procedure is valid whenever the two 
integrals (1) and (3) have a common region of absolute 
convergence. The function «(y) defined by the 
integral (4) is called the bilateral resultant or bilateral 
convolution of <?{t) and Pit)- 
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Example B. Do Example A by use of tho bilateral convolution. 

Take 

ip(t) = e~‘ in (0, «») if'(t) = 0 in (0, =°) 
= 0 in 0) = — 1 in ( — <« , 0) 

Then /(*) =* (a + 1)“> and g{s) = s~l. By equation 

(4) we compute 

u(() — J ‘ <pit — u)P(ii)du = — " >p{t — u)du 

^ - r v(n)du = -e-> 0 < t 

= — tp{u)du ——I t < 0. 

10.2 Laplace-Stieltj.es transform 

The Stieltjes integral 

(5) m = /0“e-“MO 

is known as the Laplace-Stleltjcs transform. In particularj if 

o?(0 — ip(u)du 0 < i < 40, 

then equation (5) becomes 

m - = fnm e~Mt)dt. 

On the other hand, if the sequence jx*} is defined as in §1.1, and if 

™ 0 — oo < t ^ Xo 
— stt X* ^ t ^ Xn+i 7i ~ Oj, lj 2, 

n 

s„ = 2 ®* n = 0, 1, 2, ‘ 
*-o 

then equation (5) becomes 
& 

(6) SO) - 2 a*e~*” 
fc-0 

Thus, equation (5) includes as special cases not only the classical Laplace 
transform defined in §1 but also an arbitrary Dirichlet series. 

The properties of a function /(s) defined by tie integral (5) are 
somewhat different from those of the generating functions defined in 
§1. For example, /(s) defined by equation (5) need not vanish at 
infinity. Indeed a constant may be a Laplace-Stieltjes integral, as we 
see by taking X„ = 0, a» * 0, a* = 0 (ft = 1, 2, - ■ ■ ) in equation (6). 
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Example C. Find /(s) if «(*) = t, 0 £ t £ 1, a(t) = 0, 1 < t < <#. 
We have 

f(s) = s [ e~‘H dC = — (1 — e~‘) — e~* 
Jo s 

The region of convergence is the entire s-axis. 

tO.3 The Stieltjes transform 

Let us iterate the Laplace transform: 

Ms) = L[L\<p(t)\\ = e-^du e~‘u v{t)dt 

= [ <p(l)dt f e~iM+,'ludu 
Jo+ Jo+ 

(7) Ms) - f *~$r, Jo+ s + l 

Regardless of the validity of the above change in the order of integration, 
equation (7) is said to define the Stieltjes transform, ft can be shown 
that the region of convergence of the integral (7) is a half-line which 
includes the positive s-axis. In particular, it may include some of the 
negative s-axis, as is the case if <p(l) = tr1 in the interval (1, «) and is 
zero elsewhere. 

Example D. Find the Stieltjes transform of 1 /s/i. In this case, 
tiic integral (7) clearly converges for s > Oand diverges 
for s g 0. It is easily seen by use of Peirce’s Tables 
or by iteration of the Uapiace transform of 1/V7, 

that Ms) = r/ Vs. 

EXERCISES (10) 
1. Show that T(s) is a bilateral Laplace transform. What is the 

region of convergence? 

2. Solve the same problem for B(s, l — «). 

3. As in Example A, obtain three integral representations of the 
function (s — 0)^(8 — determining the region of convergence in 
each case. 

4. Solve the same problem for s~) (s — l)-2. 

6. Find four integral representations for the function 2/(ss - s) 
corresponding to the intervals of convergence (— «>, —1), ( — 1, 0), 
(0, 1), (I, «). 

6. Find the inverse bilateral Laplace transform of the function 
(s — o)—1 (s — by use of the resultant. 

Ch. Xltl |i 0.3) THE LAPLACE TRANSFORM 399 

7. Solve the same problem for s~*(s — l)~a. 

8. Solve the same problem for 2/(s* — s) in the interval 0 < e < 1. 

9. What is the region of convergence of the integral (1) if <p{t) is 
the function e-'5? 

10. Solve the same problem if <p{t) = (sin t)/t. 

11. Find the nlh iterate of the Laplace transform of 1/vT. 

12. Find the Stieltjes transform of (f + l)-1. 

13. Find the Stieltjes transform of 

14. Evaluate the integral (5) if «(() = 0 for n 5 f < n + I when n 
is even, if «(/) = 1 in that interval when n is odd. 

15. Solve the same problem if the interval is changed to n < I | 
71 -j- 1* 

16. Sum the series in Exercises 14 and 15 and find the region of 
convergence. 
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TABLE OF LAPLACE TRANSFORMS 

ICH. XIII §10 3 

1. 

2. 
3. 

4. 

6. 
6. 
7. 

8. 

Generating 

Functions 

r(o) 
(s - c)° 

9. log 

(e - c)s + a2 
5 — C 

(•' - c)2 + a* 
a 

(s - c)! - a1 

s — c 
(s — c)2 — as 

2a3 
(s- + a2)2 

2as 
(«* + a2)2 
log s 

s 
Is + a 
|s + b 

1 
10. tan-1 - 

s 

11. 
12. 

(s - 1)" 

1 

s Vs + 1 

13. lQg (8+1) 

14, - tan-1s 
s 

1B- ^ log (** + 1) 

16. 

17. 

1 

Vs*~+1 
g-u* 

s 

DETERMINING 

Functions 

eP sin at 

e** cos at 

e?* sinh at 

ect cosh at 

sin at — at cos at 

t sin at 

r'(i) - log t 

e* - e* 
£ 

sin t 
t 

L„<0 

erf Vt 

EI(0 

SI(f) 

CKO 

Jo(0 

K(2 Vt) 

Conditions 

a > 0, se = 50 = c 

&e = Sa = C 

Be ^ — € 

«. = «<. = c + H 

st = s„ = c + |a[ 

Be ~ Sjj — 0 

Be ~ Sa — 0 

Be — — 0 

Be — sa = max (at ft) 

s* = — 0 

Sf = ®a = 0 

Be ~ Sa — 0 

— 1 
m 

Be = So — 0 

Be ~ Ba — 0 

Sc = Sa = 0 

Be ™ Ba “ 0 

CHAPTER XIV 

Applications of the Laplace Transform 

§1. Introduction 

In tliis chapter we shall give a few of the more important applications 
of the Laplace transform. Those chosen are: the evaluation of definite 
integrals; the solution of linear differential equations, ordinary and 
partial; and linear difference equations. We have already observed in 
Chapter XI, §3.2, how the transform may be useful in the evaluation 
of definite integrals provided that a factor of the integrand is a generating 
function. In some cases, the transform is also useful if one factor is a 
determining function. We shall illustrate both methods, 

1,1 Integrands which are generating functions 

[>et us suppose we have an integral of the form 

(1) jf "/(«¥(»)* 

to evaluate, where/(s) is a generating function and Ms) is a determining 

function, 

/(*) = p(s) = LjiKOJ- 

Then, if interchange in the order of integration is permissible, we have 

f(~ /(s)iKs)ds = fQ" M«)ds JQ e-'VWdl 

= JQ* v(t)dl jj e~uMs)ds 

(2) fQ~ Ms) L{M0\ds = jQ* v(s) HMD)'!*- 

In many cases, the integral on the right-hand side of equation (2) is 
more easily evaluated than the integral (I), 

Example A, Evaluate the integral 

(3) EI(s)dfl, 

In equation (2) take ^(s) = ip(t) = (1 + 
Then, if v — s(t + 1), 

40t 
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g(s)=L{m\ - (s+ !)-'. 

Equation (2) becomes 

(4) 

Lbv»-J.'v± ids = 1. 
T jo ■+■ 1)£ 1 

To make the proof rigorous, we must show that 

/.+/." TTid‘ ~ /»" rfi /." 
The integral 

r «> 
<r«+»*rfs /; 

converges uniformly in the intei val 0 £ i S /?, so that 

Our result will be established if 

But 

lim [ " c-rfs f" 
rfo-t- rf a / +1 

rfi = 0. 

/ <r*rfs / -W rfi = / EI(«fl + s)rfs 
jo+ //; £ + 1 yo+ 

- «T7 LI EI(s>*' 
so that equation (4) is obviously true. 

Example B, Take p(i) = i, ^(i) = i sin l in equation (2). Then 

ss + 1 /; 
ds 

sa + 1 
3T 
2* 

We omit details concerning the interchange in the order 
of integration. 

1.2 Integrands which are determining Functions 

Let it be required to evaluate an integral of the form 

(5) *(t) -/.■ 
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where A(s) is an arbitrary function and /{«)«= L{<p(t)\r Assuming 
that we may integrate under the integral sign, we obtain 

m 

g{s) = L\Ht)| = Jo h(x)dx [ e~Mxt)di 

»W - L **?*(£)*■ 
The integral (6) may in some cases be more easily evaluated than the 
integral (5). Once it is calculated, we have if(t) = L-,{ff(s)}. 

Example C. Evaluate the integral 

Take V(t) = <r‘, k(x) = (x + l)"1, /(«) = (s + 1)"> 
in equations (5) and (6). Then 

« 

Since, by formula 13 of the table following Cliapter XIII, 

9(s + 1) = r» log (s + 1) -LiEIWl, 

we must have 

*<0 = L-Mff(s)l = e* EI((). 

We obtained this same result by a change of variable 
in Example A. 

EXERCISES (1) 

Evaluate Ike follouring integrals by the methods of the. present section. It 
is not required to justify the changes in the order of integration which are 
employed, but care should be taken to deal mth no divergent integrals. 

1. 

2. 

3. 

4. 

5. 

/; 

L 

s e* EI(2s)rfs. 

e‘ cos s EI(s)rfs. 

I s cos s f(s)ds, f(s) = Lflog f}. 
J o+ 

f s-»e* EI(s)rfs. 
Jo+ 

f " SI(s) f(s)ds, f(s) = L\t(t + l)~% 
J 
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6. j CI(s) EI(s)ds. 
7o+ 

7. f f(s) EI(s)ds, /(s) as in 
Jo+ 

Exercise 5. 

8. f * [El ($)]*<&. 
JO+ 

9. I e Take <p{t) = e~‘ in equation (5). 
J 04* 

10. f (cos xt){x2 + l)~ldx. • ■/ 

11. x (sin xt) (x2 + IJ-'dx. 13, xr& sin xt dx> 

12. t(¥f*■ 14. / cos xt dx. 
J0+ 

15. Show that the integral (3) converges. 

§2, Linear Differential Equation. 

We consider next the solution of linear differential equations with 
constant coefficients. The Laplace transform is especially well adapted 
to this problem, particularly when all the boundary conditions are 
concerned with the values of the unknown function and of its derivatives 
at a single point. The method consists of taking the Laplace transform 
of the given differentia! equation. That is, each term of the equation 
is taken to be a determining function. The resulting equation is alge¬ 
braic, The inverse Laplace transform of a solution of thus algebraic 
equation is the required function. 

2,1 First order equations 

Consider the differential system 

(1) l/it) + a y(l) = <p(t) 

(2) y(0} = A, 

where a and ,4 are constants, y{t) is the unknown function, and tp(t) 
is any determining function whose Laplace transform has an abscissa 
of absolute convergence, Xow 

(3) JQ e~*iy,(t)dl ^ —1/(0) + s e-ttyffldL 

This equation assumes that for some value of s the two integrals converge 
and that tends to zero as t-* Tf w© set f(s) = L{<p(t) j and 
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F($) — L\y(t) I, we obtain from equations {!), (2), (3) that 

H- ay(t)]dt — ^-4 + sF(s) + gK{$) — f(s)f 

so that 

Suppose that 

Then 

Y(s) = A_±M. 
a + $ 

M- = w)i. a -f* s 

Y(s) =L[A<r* + m), 

and by Corollary 10.2, Chapter XIII, we obtain 

(4) y{l) = Aer* + 0(0- 

It is incorrect to suppose that we have proved that equation (4) 
yields the solution of the system (1), (2), We have proved only that, 
if there is a solution having all the properties assumed, then it must have 
the form (4). However, we avoid all difficulties by showing directly 
that the function y{t) defined by equation (4) satisfies the given system. 

First 
+ aAe— 0 

Ae-a‘\t-o — A. 

It remains only to show that 0(0) = 0 and that 0(0 satisfies equation (1). 

By Theorem 8, Chapter XIII, 

JO- -Llv(0 *«“"}, 
s + a 

the integral on the right converging for s sufficiently large. Hence, 

by Corollary 10.2, Chapter XIII, 

0(0 = <p(l) * e-“ = er* j‘ e°V(u)du. 

From this explicit expression the desired result is evident. 
Example A. Solve the differential system 

y'(i) + y(t) = i 

v(0) = 2 

by two methods. Since we have proved that the 
method of the Laplace transform is valid for any such 
system of the first order, we may now use it without 
veri fication. We have 

f0m e-<yf(i)di = -2 + sY(s) 

/0" r-V(0 + y(f))di = -2 + sF(s) + F(s) = «rl, 
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eo that 

K(*) = J + FTT = ^1+e~‘f 
(S) y{t) = i + *-*. 

As a second method, we may use the specific 
formula obtained above m the general case. We have 

y(t) = A<r°l + 0(0 = 2e~‘ + 0(0 
0(0 — e~‘ eudu = 1 — erl 

This again gives equation (5). 

2.2 Uniqueness of solution 

We have shown that the function y{t) defined by equation (4) is a 
solution of the system (1), (2). We must prove that there can be no 
other. Suppose there were two different ones. Their difference would 
satisfy the homogeneous system 

y'(t) + a y(t) = o 
y( o) = o. 

But such a function must be identically zero. For, 

MKOr = + a y(t)l = o 
*V(0 = c, 

where C is a constant. It must be zero since y(0) = 0. The uniqueness 
of the solution is thus established. 

2.3 Equations of higher order 

The method works equally well for equations of higher order. We 
illustrate by several examples. We reserve for a later section the 
verification of the method. Here we may show directly that the func¬ 
tion obtained by the method actually satisfies the system. 

Example B, Solve the system and check: 

y" + y = 2c* 
ff(0) = y'(0) = 2. 

Using the notation employed above, we have by 
Corollary 5, Chapter XIII, 

Mv"\ “ -2- 2s + ss7(s) 

-JL_ = -2 - 2s + (sJ + 1)7(«) 

Y(s) =-— = 1 . * ± l 
(s - l)(ss +1) S - 1 8s + 1' 
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By use of the table of transforms, we see that 

7(8) = L{ef + cos f + sin t\ 

y(l) = e1 + cos t + sin t. 

That this function actually satisfies the given system 
we see by inspection. 

Example C. Find the general solution of the system 

y” + y’ = 0. 

We may require a solution of tills equation for which 
y(0) = A, y'(0) — B, where A and B are arbitrary. 
Here 

L\y"\ = —B — As + s27(s) 

L\y'\ = —A + s7(s) 

0 =* —A — B — As + (s8 + s)7(s) 

7(s) = ^ = L|A + B - Be~*| 

y(t) = C + C = A+B, D = -B. 

This may be checked directly. 

EXERCISES (2) 
Solve the following differential systems. If the order is greater than one 

the solution should be checked. Systems of order one should be done two ways. 

1. y\t) + 2y(l) = 0, y(0) - 1. 

2. y'(l) + 2y(£) = l, y{0) = -1. 

3. y'(0 + y(t) = cos t, y(0) = 0. 

4. fflf) - y(t) = sin i, y[0) = -1. 

5. tfif) — y{!) = 0, general solution. 

6- y'(f) — y(0 = cos t, general solution. 

7. y'(0 + a y(t) = 1 + e*, general solution. 

8. y"(t) - y(i) = 0, y(0) = 0, y'(0) = 2. 

9. y"(i) - y{t) = t, y(0) = 0, y'(O) = 1. 

10. y" + 2y' + y = 1, y(0) = y'(0) - 0. 

11. y” + + y - 1, y(0) = y'(0) = 0. 

12. y"' - y’ = e-*, y(0) = y'(0) = y"(0) = 0. 

13. y"‘ + 17y" - 10*/ + V = 0, y(0) = y'(O) = y"(0) => 0. 

14. V"' + - t - I, y(0) - 2, y'(0) = y"(0) - 0. 
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15, Treat the genera! system 

y" + aitf + a*y = 0, y(0) = 3/(0) = Ax 

as was done in §2.L Consider three cases according as a\ — 4au is 
positive, negative, or zero. Show that the solution obtained actually 
satisfies the system, 

16* Solve the same problem for the general system, 

V" + arf + a0y * p(0, y(0) = A0i y'{0) « Au 

§3, The General Homogeneous Case 

We saw in Examples B and C of §2.3 that the Laplace method 
may be applied to differential systems of order higher than the first. 
In order to avoid the necessity of checking each answer, we shall now 
show that the function obtained by the method is, in fact, always the 
desired solution. In this section we treat the general homogeneous 
linear equation with constant coefficients, reserving the nonhomogeneous 
case for the following section. 

3,1 The problem 

Define a linear differential operator // as follows: 

H{y(0] = ym(t) + + * - - + ai/(l) + aOff(0. 

Here no, cti, . . ♦ , a^i arc given constants. For example, 

B\P] — 2us -f" 2ail -f- Oo^3, 

We wish to solve the system 

(1) H{y(0\=o 
(2) v*m = Ak k = 0,1# • ■ • , n - 1 

for the unknown function y(t). The A* (k = I, 2, * ■ ■ , n — 1) are 
given constants. 

We begin by defining, by use of the two sequences of constants {a*j 
and (A*}, the following polynomials: 

<fa(s) — AqS^ + AiS^1 + * ■ ■ + Ak 

M{s) = + ftn-i+ * * * + atqois) 

N(S) - Sn + On-1&*~1 + * * * + S + 00, 

The forma! solution of tlie problem is easily expressed in terms of these 
functions. If Y (s) is the Laplace transform of the desired solution y(t) 
we see by Corollary 5, Chapter XIII, that 

L\yikm\ = + *Y(b) k = 1, 2, ■ - # I»- 

If g_!(s} is defined as 0T this equation also holds for k = 0. Multiply 
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it by ujt and sum from 0 to n (a* — 1), This gives 

0 - L{H\y(t)} \ - -Jf(a) + N(s)Y(s)t 

so that Y(s) is M(s)/N(s). 
Since the quotient M(s)/N(s) is a rational function which vanishes at 
infinity, we know by Theorem 12, Chapter XIII, that it is a generating 

function: 

(3) 

We shall show that «(/) Is the desired solution of the system (I), (2), 

3,2 The class E 

We now introduce a class of functions whose derivatives do not become1 
infinite at + more rapidly than exponential functions. 

Definition JL a{i) z E <—4 
A, a{t) eC“ OgK od 
B. Constants M* and c exist such that 

£ M&* k = 0, I, 2, - - * ; 0 £ t < ». 

Notice that the constants M may vary with h but that <r may not. 
For example, if a(l) — sin 2/ we may take v = 0 and Mk = 2*. Clearly, 
any polynomial belongs to E* Any linear combination of functions in 

E is also in E. 

Theorem 1, 1. a(t) z E 
2. 0(t) z E 

— ■ > e E* 

For, let 
(4) |*«(0| £ M*0« 

(5) |fl»(0l £ Mkd* k « 0,1, • - • ;0 £ i < *>. 

There is no restriction in using the same constants M and <r for the two 
functions. For, if Uvo of the corresponding constants differed initially, 
we could replace the smaller by the larger, retaining the inequality a 
fortiori. By Leibniz's rule for the derivative of a product we have 

wortop = 2 0) >(o/^(0 
IMflflOFI.S N*e™ k - 0, 1, * • ■ ; 0 g l < CO 

Nk= 

This completes the proof. 
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Theorem 2. 1. a(t) e E 
2. 0(t) t E 

-$ «(0 * 0(1) e E. 

From the definition of the resultant we have by differentiation that 

mo •mx = «(o«o) + «(o*j9,(o- 
Then by induction we have for every positive integer ft 

k-1 

(6) mo * m)w = 2 •^(op*-m,co) + «(o * j8»>(o. 
A 

By inequalities (4), (5), 

|[a(0 * 0(OPI 5 e* ^ + ft MoMte'^^du 
i-0 

g ft = 1, 2, ■ • • ; 0 S f < * 
fc-i 

Nk - 2 + A/oMi, 

A 
Here we have used the fact that t < & for 0 S t ^ The proof is 
complete. 

3.3 Rational functions 

We shall show next that any rational generating function is the 
Laplace transform of a function of E. 

Theorem 3. L R(s) is rational 
2. R(s) = L[t?{t) 1 

-^ £ E> 

As we saw in the proof of Theorem 12, Chapter XIII, ^(0 is a linear 
combination of functions like 

L ' |* - fl)’ L ' {(8 - t>)3 + C3)' 
s — b 

(s - b)- + caJ 

by the process of convolution. These three functions are c“‘, cM sin cl, 
and d* cos cl. Our result is now a consequence of Theorems 1 and 2 since 
we may see by inspection that c°‘, r«, cos cl, sin cl all belong to E. As 
a corollary to this theorem, we see that the function a{t) defined by 
equation (3) belongs to E. 

3.4 Solution of the problem 

To prove that the function a(t) defined by equation (3) satisfies the 
system (1), (2), we need a preliminary result. 
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Lemma 4. 
4/(s) _ An , Ai , 

N(s) ~ s' «* + s\Y(s) ’ 

where P„_i(s) is a polynomial of degree n — 1, at most. 

Let Pk(s) be the polynomial consisting of the last k + 1 terms of 

tfn-t(s), ft *= 0, I, **•,»“ 2: 

P*(s) = As_*_lS* + • • * + An-sS + A„_! 
Then 

!«'■ “’ 0 = §n— 1 

ffn-l — PlJ =8 $„-S 

?n-l - Pi = 

1.. • 
9»-l ~~ Pn—S = S"-D 
?■-] — q*-i = S" ■ 0. 

Multiply the first equation by 1, the second by s-’a,,-!, the last by 
s-"Oo and add: 

$fn— l(8)iV(s) Pn—](■*>) _ 

Pn-l(s) — «.1,_iSB~1PoCs) + ‘ • • +«i*-P„_.{s) + (Zo^n-lfs). 

Clearly, each term of Pn-i(s) is a polynomial whose degree is at most 
n — 1. Since 

?n-l(s) __ Aa . A_1 I ... [ A.n~t 

s’* a a* ~ sn ' 

the proof is complete. 

Theorem 4. 1. = L [«(()) 

-$ A. JT|a(0l = 0 
B. ^(O) = A* ft = 0, !,*■*, a — 1. 

Let us prove B first. Since a(t) t E, we see by Theorem 5, Chapter 
XIII, that 

(7) EW{t)\ = ~«(0) 4- sL|a(0| s > <r. 

By Corollary 1.3, Chapter XIII, the left-hand side of equation (7) tends 
to sero as s —> <w. By Lemma 4 

Hm ,L |«(0| - Urn - X. 

so that a(0) = A 0. Proceed by induction. Assume B for ft = 0, 1, 
■ • ■ , m — 1, where m < n. Then 

L (0) = -aw(0) - A„_is - ■ • * - A os™ + e"+1L{a(0). 

By Lemma 4 the right-hand side tends to — «("°(0) -f Am, whereas the 
left-hand side tends to zero as s -> «. Hence, «<m)(0) = Am, and the 
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induction is complete. Accordingly, 

(8) 0| = ~Qk-i(s) + &L[a(t)| ft = 1, 2, • • * , 

Combining these n equations, we obtain 

Hfffa( OH = + 
By equation (3) the right-hand side is zero. Hence, by Theorem 10. 
Chapter XIII, we see that A holds. The proof is complete. 

EXERCISES (3) 
1. Which of the following functions belong to E: 

sin2 (30, log (1 + 0, < {* + l)(f - 1K (t “ 1)(( + I)“l? 

2. Show that te'zE. Is there a smallest value for er? If <r is 
chosen as 2, what is the smallest possible value of Mk? Answer the same 
question if a — 

3* Show that l *e*zE and that, we may take = M* = 1. 

4. Show that e~l sin t z E and that we may take <r = — 1. 

5. Complete the induction in the proof of Theorem 2. 

6. If M/N — (s2 + I)-2, find «(0 explicitly and show that a(£) zE. 

7* Solve the same problem if M/N - s(s -1- 1)-J(fl3 + 1)“*3. 

8. In Exercise 6 show that a(0) = 0. 

9* In Exercise 7 show that **(0) = c*'(G) — a"(0) — 0. 

10. Assuming that M(s)/N(s) <*an be expanded in a convergent series 

find a(0 explicitly by use of Theorem 13, Chapter XIIL Thus, prove 
conclusion B of Theorem 4. 

11. Find M(s)f N(s)t ce(t) if n - 3, an — aQ — 0, oi = 1, A* * Ax = 
An — 1. Show that a{f) e E and that £*(*) satisfies the system (1), (2). 

12. Expand the function M(s)/N(s) of Exercise 11 in powers of 1/s 
through 5 terms by long division. Show that the three first coefficients 
are Ao, A l, A 3, as predicted by the theory (Lemma 4 and Exercise 10). 

13. Show that the system (1) (2) cannot have more than one solution 
of class E, 

§4. The Nonhomogeneous Case 

In this section we shall solve the nonhomogeneous linear system cor¬ 
responding to the system (1), (2), of §3.1, That is, we shall replace 
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the right-hand side of equation ()), §3.1., by an arbitrary function se(0 
which has an absolutely convergent Laplace transform, retaining equa¬ 

tions (2), §3.1, as they were. 

4.1 The problem 

We wish to solve the system 

(1) Hlv(l)} = v(t), i|p(0J =/(e) s > «. 
(2) yt*>(0) = At ft = 0, 1, • * * , n - 1. 

It will be sufficient to solve this system with all the Ak = 0. For, 
if 0(f) is a solution of this modified system and if a(0 is the function 
of §3, then a(t) + 0(0 is a solution of the system (1), (2). 

4.2 Solution of the problem 

Let N(s) be defined as in §3.1. Then by Theorem 3 the function 
i/N(s) is a generating function, the Laplace transform of a function of E: 

_L = fV 
N(s) Jo 

5(t)dt 6(0 z E. 

This integral converges absolutely for s > a. By Theorem 8, Chapter 
XIII f(s)/N{s) is also a generating function, the Laplace transform of 

<p(0 - 5(0- This resultant is the required function 0(0. 

Theorem 5. 1. f($) — LI p(0} 

2- 

3. m - vW» 

A. //{«(0 +0(01 = v(0 
B. ct»m + 0W(O) = At 

S ^ Sq, 

$ > <T 

We show first that 

(3) 

By Theorem 3 

S‘*>(0) = 0 

ft = 0, 1, 

ft = o, i, 

n 1. 

a"~* _ f' 

N(s) ~ Jo 
c-“ y(t)dt 

n — 2. 

7(0 E E. 

But I/s’1-1 — L{l*^2/(n — 2)1}. Hence, by Theorem 8, Chapter XIII, 

we have 

s<*> - o£Wi *1,(0 - /„' 
Now equations (3) are evident by inspection. 
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Next we show that 

w pm = o k = o, i, * • •,«-1. 

By virtue of equation (6), §3, and by equations (3) we have 

= p(l) * £(t)(f) = Ja v(t — u)&<k)(u)du k = 0, 1, ■ • ■ , n — 1, 

so that equations (4) become obvious. 

It remains only to show that 0(() satisfies equation (I). By virtue of 
equation (8), §3, we see that 

L[/3«>(i)j - a*L{/S(i)} ft = 0,1, •••,» 

L\II\m I! = N(s)L{ft(t)} 

The proof is now completed by use of Corollary 10.2, Chapter XIII. 

4.3 Uniqueness of solution 

Theorem 6. There is only one solution of the system (1), (2). 

As in §2.2 we see that it will be sufficient to show that the only 
solution of the system (1), (2), modified so that <p(t) = 0 and Ak = 0 
(A — 0, 1, * * ■ , n— 1), is y{t) = 0. Since V(s) can always be factored 
into real linear and quadratic factors (some of which may be repeated) 
it is clear that the differential expression Ii\y{t)\ = N{D){y(t)\ can 
be written symbolically as a “product” of “factors" of the form 

(D — a), (D — h)3 + c3. 

Here a, b, c are real constants, and D is the symbol for differentiation 
with respect to t. The order of the symbolic factors can be changed at 
will. Suppose that 

(5) tfCD)fy(0l = {D-a)U(t)} =0, 

so that z(f) is a linear combination of y, y1, • • • , yt—n. By equations 
(I) and (2) with „(0 = At = 0 (k = 0, 1, • * ■ , n - 1) it is clear that 
yt">(0) is also zero, so that z(0) = z'(0) = 0. But we showed in §2.2. 
that these boundary conditions applied to equation (5) imply that z{L) 
is identically zero. In this way we can eliminate step by step all the 
linear factors in N(D). Clearly, our proof will be complete if we establish 
the following result. 

Theorem 7. 1. [(/> - &)! + c3](y(f)} = 0 

2. y(0) = y'(0) = 0 
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It is easy to see that 

(0) + + 

from which we have our result by two integrations. In each case the 
constant of integration is zero by virtue of hypothesis 2. 

EXERCISES (4) 
1. If n — 2, Co “ 1, at = 0, A# = Aj = 1, <p{l) — l, find M\s), 

N(s), /(«), «(i), j8(f), 5(f). Check directly that «(f) + 0(t) satisfies the 
given system. 

2. In Exercise 1 find 7(f). Check directly that 5(f) = 1 * 7(f). 
Find a function = L-1jl/ilf(s)|. Show that 3(f) = «(f) * ^(f). 

3. In Exercise 11, §3, add the condition <p(t) = 1. Solve Exercise 1 
of the present section with these data. 

4. Do Exercise 2 with the data of Exercise 3. 

5. Let P„(s) denote a polynomial of degree n. Show that, if k is a 
positive integer, the function L~l {Pn{$)/Pn+i;+i(s) | vanishes with its first 
k derivatives at the origin. 

6. Illustrate Exercise 5 by use of the following functions 

1 1 I 
s3 + s + l' s3 + 2s H- l’ s* + s*' 

7. In Exercise 1, use a series expansion of f{s)/N(s) to show that 
0(0) = — 0. Why is £"(0) also zero in this case? Compare 
Exercise 12, §3. 

8. The corresponding prohlem for Exercise 3. 

9. Verify equation (6). 

10. Give the details in the proof of Theorem 7. 

11. Show by expanding that (D — a)(D — b)\(D — e)3 + d2]y(t) i3 
equal to (D — &)[(/) — c)3 + d2](D — a)y(t). 

12. Let jfi(f), y-(f) be two solutions of the equation 

. such that 

Prove that 

= y" + p(t)yr + q(t)v = 0 

W{t) = i&yi — y\y-i 7± 0. 

13. Use Exercise 12 to prove a uniqueness theorem for general 
second order linear differential equations.. State the theorem. 
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14. Use Exercise 12 to obtain equation (6). 

16. Replace equation (C) by one involving sin cl. 

§5. Difference Equations 

A difference equation is analogous to a differential equation, the 
operation Ay* = yn+l — y„ in the former corresponding to the operation 
of differentiation, D y(t) = in the latter. In a difference equation 
the unknown is a sequence [y*j, whereas in a differential equation it is a 
function y{l). In §1, Chapter XIII, we showed how a Laplace integral 
may be regarded as a generalized power scries, in which the sequence of 
integral powers has been replaced by a continuous variable. Since 
the Laplace transform was so useful in solving linear differential equations 
where the unknown is a function of the continuous variable, it is natural 
to conjecture that power series would play an analogous role in the 
solution of linear difference equations where the unknown is a sequence— 
that is, a function of a variable which takes on only integral values. 
It is this point of view which we shall adopt. It would be possible to 
use the Laplace transform instead of the power scries transform. The 
present section should be regarded as a means of giving insight into the 
method described in the previous sections. 

5.1 The problem 

The general linear difference system with constant coefficients has 
the form 

(1) = A-y* + an-An~lyk + • ■ • + a,Ay* -f a0yt = vk 

(2) A'yo — A,- j = 0, 1, • * * , n — 1. 

Here {y*!? is the unknown sequence, {<pk}% is a given sequence, and 

ao> “u ' ' ' , On-i, A0, Ah • • * , are given constants. Furthermore 

Ay* = yit+i — y* 

AV = A(Ayt) = y*+, - 2yt+l -f y* 

(3) A-y* = A(A-V) = 2 
j-0 f 

By virtue of equation (3) the system (1), (2) can lx; replaced by 

(4) H\yk) = yk+n + 6B„iy*+n_1 + • • • + 6iy*+i + toy*, = p* 

(5) yi = Bf j = 0, 1, * • * , n - L 

In fact, the constants 6/ and can be expressed explicitly in terms of 
the constants Qj and Af, and conversely. Hence the systems (l)r (2) 
and (4), (5) are interchangeable. 
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Example A. Convert the system 

Vk+i — Stjk+i + 2yk =—l 
yo - % V\ * 4 

into its equivalent form involving A. Since 

tf*+i = Vt + A#* 
Vk+t — Vu + -p 

we have for the equivalent form 

A% — = —1 

Vo = = 2. 

It is easy to see by direct computation that y^ — 2* + 
k + i satisfies both systems. 

5.2 The power series transform 

A power series 

(6) m = 2 **** 
k-Q 

may be regarded as a transform which carries the sequence of the coeffi¬ 
cients [<ph\ into the function f($) which is the sum of the series. The 
sequence may be called the determining sequence; the sum function, the 

generating function. 

Definition 2. The function /($) is the power series transform of the 
sequence the relation being indicated by 

m = nm i, 

4—► equation (6) holds, the series converging for some s 0. 

Example B. Findl|/c|. We have 

/(«)= 2 ksh = sTsl * 
k-0 k-0 

!{&} = s(l - «)-* -1 < s < i. 

Example C. T{l/AtJ = e* — <* < s < «. 

Example D, /(p*| = (1 — ps)-1 |sp| < 1. 

5.3 A property of the transform 

We now obtain a relation analogous to that established in Corollary 5, 

Chapter XIII. 

Theorem 8. I{wt} = vo + + ■ • ■ + spf|<p*+pl- 

For, if p = 0, 1, * • * , we have 
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* j>-j 

^ VkS*' 
k-p fr-0 

Example E. Find l\k + 2\. Here <pk = k and 

%*+s| = 
<f>l) <Pt , 1 ,, , 
77 - T + 7J*W 

'<* + 2' = -i + ^rhp-(f^- 

We can check this result directly by expanding the 
rational function in Maclaurin's series. 

5.4 Solution of difference equations 

We shall make no attempt to solve the general problem, but we shall 
illustrate the method by solving a number of particular difference 
systems. 

Example F. Solve the system 

&Vk + 2yk — 0, yQ = I, 

This is equivalent to 

1/*-h + Vk = 0, y0 — h 

Set/(s) = By Theorem 8 with p — 1 

= -7 + |%*! 

I\v*+1 + Vk] — o'= -k+M+fie)) 

so that 
to 

A«) - - £ (- 1)V. -1 < B < 1. 

Since a function cannot be expanded in powers of s in 
more than one way, we must have 

Vh = {—I)* 4 ~ 0, 1, • * ♦ „ 

We can verify directly that this sequence satisfies 
the given system. 

Example G* Solve the system 

l/*+i + Vk — lf 

In this case, we obtain as before 

|/o = 1. 
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1 

-?+G+i)/w 

Jfe-0 
k odd 

k even. 

Example H. 

1 - * 

*•> - nb - P 

Vk = 0 
Vk = 1 

Another form of the answer, which puts into evidence 
that the answer is the sum of a solution of the homo¬ 
geneous system of Example F and a solution of the 
modified nonhomogeneous system (y0 — 0), is 

Vk = (-1)* + [1 + cos (A + l)r]/2 A = 0, 1, * • * . 

Solve the system of Example A. 

2 
%*+a| = 

S- 

4 . /(<) 
s + 8s 

%*+i| = — | + “^ 

/(s) - 
2 - 4s + i + 1 

(1 - s)a(l - 2s) (1 - s)a 
= l{k + 1} +/(2*j 

Vk — 2* + A + 1 k = 0, 1, 

EXERCISES (5) 

Convert the systems in Exercises 1-7 to the other form. 

1 - 2s 

1. jft+i - 2yk = k 

2. Ayk - 2yk = 0 

3. Vu+t — Vk — k + 1 

4. A2^* + 4Ayk + 4yk = 0 

6, A^t + 2A*yk = I 

6. y*+» + 3y,H2 — 4yk = —A 

7. + Vkes + j/t+s + yk+1 = 1 

8. Solve the system of Exercise 1. 

9. Solve 2. 11. Solve 4, 

10. Solve 3. 12. Solve 5. 

15. Show that l\<Pk\ • l\ifrk| = l\<pk *$k\, where 

3/o = 0. 

3/o = 1. 

Vo = V\ = 0 

Vo = 1, Ay i = 0. 

Vo = I, Ay<, = AMf0 = 0. 

3/o = 3/i = 3/a = 0. 

l/o = Aya = A2y0 = A3^ = 0. 

13. Solve (5. 

14. Solve 7. 

JC 

Vk *Tpk ~ y 

1-0 
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Questions of convergence may be omitted. 

16* HAyk\ = ? 

17. l[A%yk\ - ? 

18. Show that the general solution of the equation 

1 “ 0>1 + P2)Vk+l + PlptUk = 0 pi p* 

is yk = ,4 ipj + A2P2* the method of the present section. 

19. What is the general solution in the previous exercise if pi = pi? 

20. Prove equation (3) by induction. 

21. Express the BTs of equation (5) in terms of the A'$ of equations 
(2) and express the AJs in terms of the B’s. 

22. Solve the same problem for the a's and the ft's. 

§6. Partial Differential Equations 

The method of the Laplace transform may be used to solve partial 
differential equations. A first application transforms the equation 
to an ordinary equation. A transformation of the latter equation con¬ 
verts it into an algebraic equation, which is then solved. Two inverse 
Laplace transforms give the desired solution. Wc illustrate by the 
problem of the vibrating string solved in Chapter XII. 

6.1 The first transformation 

Since we have already solved the problem when set with general 
constants, let us here specialize the constants to simplify the writing. 
Let us solve the system 

afrfo 0 = afrfo 0 
dp dx* 

y(Qt t) = |r(2, 0 “ 0 0 £ l < « 

y{x) 0) = fix) — qc < ar < so 

(x, 0) = 0 - cc < * < 

(1) 

(2) 
(3) 

(4) 

where f(x) zD1 (Definition 8, Chapter XII) and 

/(x + 4) — f(x) — ce < x < co 
/( — as) — —/(*) — « < x < 00, 

Note that, if f{x) had the period 2ir instead of the period 4, we should 
have precisely the conditions of Theorem 7, Chapter XII. 

Set 

Y(x, s) = jj e~rty(_x, t)dt. 
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When we are thinking of s as a constant, we shall write 

Y(x) = Y(x, a). 

Transforming in the usual way, our new system is 

(5) 7"(x) - *J7(*) = sf(x) ' 
(6) 7(0) = 7(2) = 0. 

When s is kept constant, this is a linear system with constant coefficients. 
However, the boundary conditions involve more than one point. We 
may still’apply the method, as we did in earlier examples, involving the 

general solution of an equation. 

6.2 The second transformation 

Set „ 
«(*) = jj e—Y(x)dx, v{z) = jo e—f(x)dx. 

\ow replace conditions (6) by 

(7) T(0) = 0, Y'(0) = A, 

where A is a constant which will later be determined so that 7(2) = 0. 

The transform of the system (5), (7) is 

w(z) 
A — s v(z) 

& - ft1 

Hence, 

Y(x) = j sinh sx — f(x) * sinh sx 

— — sinh sx 
s 

f(w) sinh s(x — w)dw. 

After determining the constant A so that 7 (2) - 0, this becomes 

(8) 7{x) = 2^ f T{w) 3(2 — — Jo f(w) s*n^ s(z *" 

By virtue of the identity 
mk *r* « HJ11 mi « 1 /fl \ 

— smh sw smh s(z — x)} (sinh s(2 - w) sinh s(x - v>) 
jsinh 2s sinh sx 

equation (8) becomes 

(1°) 7(x) - Jf K*>) 6inh ~ w^dw + 

sinh »(2 ^x) rf(w) ^ w dw 
smh 2s jo 

From this form of the solution it may be checked directly that equations 

(5) and (6) are satisfied by the function 7(x) and that 

(H) 7(2 - x) - 7(x), 

whenever f(x) has that property. We have proved the following result. 
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Theorem 9. The function T(:r) defined by equation (10) is the solution 
of the system (5), (6). 

6.3 The plucked string 

Let us now specialize the function /(*) as follows: 

(12) f(x) = x 

(13) = 2-x 

'Then from equation (8) or equation (10) we have 

Y( \ _ x _ 1_ sinh xs 
s s2 cosh s 

OSlil 

OSiil. 

To obtain Y(x) in the interval (1, 2), we have only to use equation (11). 
To find the inverse transform of Y{x, s) = Y(x), considered now as a 
function of s, we need a preliminary result. 

Lemma 10.1. 1, «(0 = 0 — cc < l g Q 

= t 0 £ t £2 

= 2 2 g t< 4 
2. «(t + 4) = M(i) + 2 0 ^ t < « 

LWit)\ = 

For, 

Hence, 

sa(l + <r**) 0 < S < £C. 

/•4i+4 

Jik 
ii(( 4 4A)df. j I 

« 

** + J <T’ldl ^ L|u(01 = J e-‘'u(t)dt 

*-G fr-u 

- r=^ r r ^ 

The result is now obtained by evaluating the integrals. 

Lemma 10.2. 135*2 « L\o>{t - l + x) - w(t ~ 1 - x)\ 

0 < S < oc. 
For, 

e"-* jdnh xs 

s2coshs - s2(l + «-*•) “ ^(l -j- e-!4)' 

We have only to use Lemma 10.1 and equation (3), §4.2, Chapter XIII, 
to obtain the result. 

Theorem 10. The solution of the system (1), (2), (3), (4) with f(x) 
defined by equations (12), (13) is for, 0 $. t £ 1 
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y[x, l) — x 0 £ x £ 1 — t 
= 1 - i • • 1 - x g 1 + ( 
= 2-1 1 + ( g a S 2. 

From equation (11) and the definition of Y(x, s) we see that 

(14) y( 2 - x, t) = y{x, () 0^K®,0£rS2. 

Hence, it will be sufficient, to prove our result for 0 £ x £ 1. By virtue of 
Lemma 10.2 we can find the inverse transform of Y(x, s). It is 

y(z, /) = x — oi(t — I + x) + co(f — 1 — *). 

Now, if 0 ^ t g 1, 0 ^ x £ 1, we have from the definition of u(t) that 

y(x, t) = x 0 J i £ 1 - i 

• =x - (t~l+x) l-iS*SL 

This establishes our result. It agrees with the result obtained in Chapter 
XII, where it was verified that y(x, l) actually satisfied the given system. 

EXERCISES (6) 

1. Prove identity (9). 

2. Prove equation (10). 

3. Prove equation (11). 

4. Give details in the proof of Theorem 9. 

5. Solve the system (5), (6) by the method of “variation of param¬ 

eters.1' 

6. If <p(t + a) = <p(l), 0 ts t < a>, 0 < o, show that 

L\<p(l)\ =* (1 - e~*)_1 J* e~“ip(t)dt 0 < s < 

7. Illustrate Exercise 6 by taking #(t) = t, 0 < t < a/2, <p(l) =* — 1, 
a/2 <t < a. 

8. Do the same problem if <p(t) = 0 ^ l £ a/2, ^(a — i) — <p(t)* 

9. If <p(l + a) = <p(i) + b, 0 g l < 0 < ay 0 < bt find L\(p(i)} in 
a form analogous to that obtained in Exercise 6. 

10. Prove Lemma 10.1 by use of Exercise 9. 

11. Give details in the proof of equation (14). 

12. Show that the function y(xt 0 of §6.3 has the form 

y(x, i) = £/(* + 0 + $f(x - t). 

13. Find y(x, /), §0.3, for 1 < t < 2, 

14. Solve the same problem for 2 < t < 3. 

16. Show that y(x, l), §0.3, lias the period 4 in t. 
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Index of Symbols 

absolutely convergent, 245, 286 
asymptotic to, 320 
belongs to, 5 
beta function, 308 
functions of class C, 5 
functions of class Cn, 7 

general term of Fourier series, 331 
Ces&ro summability, 203 
Ces&ro summability, 201 
cosine integral, 383 
05 
functions of class D, 330 
functions of class D\ 330 
del, 65 
divergence, 65 
functions of class E, 409 
exponential integral, 3S3 
error function, 383 
greatest lower bound, 149 
Gradient, 32, G5 
gamma Function, 303 
implies, 5 
implies and is implied by, 5 
inner or scalar product, 51 
Holder summability, 265 
Bessel’s function of order zero, 394 
Bessel's function of order a, 394 
Laplace transform, 367 
inverse of Laplace transform, 367 
inverse of f^aplace transform, 389 
Laguerre polynomial, 383 
Laplaeian, 65 
lower order infinity, 230 
least upper bound, 149 
not, 5 
norm,127 
non-decreasing function, 128 
nonincreasing function, 128 
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P, 
Rt = R[a, b, <p(x), i£(ar)J, 

«•! 

sic*), 
S«(x), 

V*v = V{R, s»(*. y) i 

outer or vector product, 51 
functions of class P, 329 
plane region, 153, 102 
abscissa of absolute convergence, 
abscissa of convergence, 371 
sine integral, 383 
partial sum of Fourier series, 331 

y)], solid region, 176, 179, 180 

374 

Index 

A 

Abel sum inability, 265, 301 
Abscissa: 

of absolute convergence for a IjipJacc 
transform, 374 

of convergence for a Laplace trails- I 
form, 371 

Adams, J. 307 
Angle between surface curves, 91 
Approximation: 

least square, 354, 356 
polynomial, 355 
trigonometric, 354 

Arc length, 90 
Area: 

of a region, 184, 193 
of a surface, 172 

Arithmetic means (see Cesitro summa- 
bility) 

Attraction for a continuous distribution 
of mass, 174, 178 

B 

Bessel1® function of order nf 394 
Bessels inequality, 333, 334, 337, 357 
Beta function, B(ae, y), 308#., 341 
Bilateral convolution, 396 
Bilateral Laplace transform, 395, 398 
Bilateral resultant, 396 
Bonnet's theorem, Wciers trass form of, 

138 
Bound: 

greatest lower, 149 
least upper, 147, 149 
of eontmuous function, 146 

Boundary-value problem, 316 
Bounded variation of a function, 132 

C 

Cr definition of class C, 6, 10 
(<7f!) (set Cesitro summability) 
Cauchy remainder in Taylor’s series, 35 
Cauchy's convergence test, 242 
Cauchy's criterion, 233, 235 
Center of gravity, 168, 178 
Ces&ro sumrnability, 262-265, 300, 351 

Claes C, Dt D\ E, P, etc. (see C, D, D\ 
E, P, etc.) 

Cnt definition of class €nt 7, 11 
Comparison tests for convergence and 

divergence: 
of improper integrals, 269, 280, 2S1 
of infinite scries, 239, 240 

Components of a vector, 50 
Contact of order n, 76 
Continuity, uniform: 

for functions of a single variable, 147 
for functions of two variables, 183 

Continuous distribution of mass, 142, 174 
Continuous function, 6,10, 145-149, 291, 

296 
Convergence theorem for Fourier series, 

336 
Convolution, 380 (see also Resultant) 
Cosine integral, Cl (x), 383, 385, 400, 404 
Cramer's rule, 21 
Cross derivatives, equality of, 41—13 

Curl, 65 
Curvature, 80 

mean, 93 
normal, 92 
total, or Gaussian, 93 

Curve in space: 
arc Length of, 72 
normal plane to, 74 
rectifiable, 72 
tangent line to, 73 

Curves: 
closed, 186 
family of plane, 118 
Jordan, 184, 186, 1S7 
regular, 186 
aection&Uy smooth, 186 

Curvilinear integral (see Integral) 
Cylindrical coordinates for triple inte¬ 

grals, 179 

D 

Dj definition of class Dt 330 
/P, definition of class Dl, 330 
D'Alembert's ratio test, 242 
Definite integrals, evaluation of, 313-315 

Del (V), 65 
Delta-neighborhood (^-neighborhood), 10 
Density of a continuous distribution, 142 

427 
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Derivative: 
directional, 30, 66 
of higher order, 3, 16, 20 
on the left, 6 
on the right, 6 

Derivatives: 
cross, equality of, 41-43 
partial, definitions of, 1, 11 

Determining function, 402 
definition of, 367 

Determining sequence, 417 
Developable surface, 123 

polar, 124 
rectifying, 124 

Diameter of a region, 154 
Dienes, P*f 186 
Difference equations, 416 
Differential: 

definition of, 29 
exact, 213 
existence of exact, 195 

Differential equation: 
exact, 196 
homogeneous linear, 408 
linear, 404 
nonhomogeneous linear, 412 
of hyperbolic type, 346 
of vibrating string, 344 
partial, 420 

Differentiation: 
of a function defined by a proper 

integral, 291-293 
of a function defined by an improper 

integral, 298, 313 
of implicit functions, 19 
of infinite series, 259 
partial, 1-49 

Directional derivative, 30, 66 
Diriehlct formula, 165, 166 
Dirichlct series, 366, 369, 397 
Divergence, Div, 65 
Divergent integrals, 300-302 
Divergent series, 261-265 
Domain, 10 

bounded, 153 
Double integral: 

applications of, 168 
definition of, 154 
existence of, 182 
iteration of: 

in polar coordinates, 162-164 
in rectangular coordinates, 159-161 

properties of, 15G 
Duhamel's theorem, 72, 132, 144, 147, 

168, 181, 183, 185, 188, 190, 200 

E 

Et definition of class Et 409 
Envelope, 118 

Envelope {Coni.): 
of families of surfaces, 122 
of normals, 120 
of tangents, 120 

Equations: 
difference, 416 
simultaneous, 21, 47 

Error function (erf), 3S3, 385, 399 
Euler’s constant, 307, 321 
Euler’s theorem, 15 
Exponential integral, El {a:}, 383, 384, 

400, 40 E , 403 
Extrema, 105 (sec also Maximum and 

minimum) 

F 

Faltung, 380 {see also Resultant) 
Fejtir, L.j 351 
Fej5rfs theorem, 352, 354, 355 
Field of force, conservative, 190 
First fundamental form of a surface, 

90 
First mean-value theorem for Riemann 

integrals, 34 
First mean-value theorem for Stieltjes 

integrals, 137 
Fourier coefficients, 32*1, 327 
Fourier cosine transform, 362 
Fourier integral, 324, 359 

convergence theorem for, 362 
Fourier series: 

convergence of, 333 
convergence theorem for, 336 
definition of, 324 
for an arbitrary interval, 343 
summability of, 351 

Fourier sine transform, 362 
Fourier transform, 362 
Frenet-Scrrct formulas, 83, 92, 124 
Function: 

BesscFs, of order n, 394 
beta, 308, 341 
composite, 12 
continuous, 6, 10, 145-149 
defined by a proper integral: 

continuity of, 291, 292 
differentiation of, 291-293 
integration of, 159, 162, 165, 166 

defined by an improper integral: 
continuity of, 296 
differentiation of, 298, 313 
integration of, 297 

determining: 
differentiation of, 374 
product of, 380 

error, (erf), 383, 385, 399 
even, 327 
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Function (Coni,}: 
gamma, 3G3, 341, 368, 398, 399 
generating (see Generating function) 
homogeneous, 14-16 
implicit, 2, 18, 38, 44 
integrator, 126 
limit of a, 4, 9 
multiple^ valued, single-valued, 1 
normed, 325 
odd, 327 
of bounded variation, 132 
of class C, 6, 10 
of class O, 7, 11 
of one variable, 4-8 
of several variables, 9-13 
uniformly continuous: 

in a region, 183 
on an interval, 147 

Functional dependence, 45 

Functions, orthogonal, 325 
Fundamental form of a surface: 

first, 90 
second, 91 

G 

Gamma function, f(£), 303 /., 341, 368, 

398, 399 
Gauss's theorem, 191, E97, 307 

Generating function: 
definition of, 367 
differentiation of, 374 

of a sequence, 417 
Generating functions, product of, 380 
Gradient, Grad, 32, 65, 66 
Gravitational attraction (see Attraction) 
Greatest lower bound, 149 

Green's theorem: 
in three dimensions, 200-202, 206, 

213-215 
in two dimensions, 191-199, 210 

Gyration, radius of, 171 

H 

Harmonic analysis, 343, 350 
Harmonic aeries, 240 

Heine-Borel theorem, 145, 146, 185 

Helix, 58 
H aider surnauability, 265 
Homogeneous function, 14 

Homogeneous linear differential equa¬ 
tion, 408-412 

Homogeneous polynomial, 3 

Hyperbolic type, differential equation of, 
346 

1 

Implicit function theorem, 44 
Im p ro per int egra Is: 

absolute convergence of, 270, 281, 285 
classification of, 267, 285, 286 
comparison tests for, 269, 280 
conditional convergence of, 270, 276- 

278 
convergence of Type I, 268 
convergence of Type 111, 280 
convergence of Types II and IV, 284 
divergence of, 268, 285r 300-302 
functions defined by (see Function) 
limit tests for, 273, 281, 285 
sum inability of divergent, 300-302 
uniform convergence of, 288-290, 296- 

299 
Weierstrass M-teat for uniform con¬ 

vergence of, 289, 362, 375 
Indetcrminnnt form: 

evaluation by orders of infinity, 230 
evaluation by series, 228 
I'HospttaFs rule, 21$, 221, 225, 227 
type 0/0, 216 
type « / so, 220 
types * — co, 0* *, 225 
types 1", 226 

Inertia, moment of, 126, 142, 170 
Inferior limit, 233 
Infinite series: 

absolute convergence of, 245-249, 255 
alternating! 245-247 
comparison tests for, 239-240 
conditional convergence of, 246 
continuity of the sum of an, 257 
convergence tests for, 239, 240, 242— 

244, 249-251, 254 
definition of convergence and diver¬ 

gence of, 238 
differentiation of, 259-261 
integration of, 257-259 
method of, for evaluation of definite 

integrals, 315 
summation of divergent, 261-265 
uniform convergence of, 252-255 

Infinitesimal, 231 
Infinities, table of, 230 
Infinity, definition of orders of, 230 
Integral: 

curvilinear, 186 
divergent, 300^302 
double, (s£<! Double integral) 
Fourier, 324, 359, 362 
improper (ace Improper integral) 
iterated, 157, 165, 176 
Lebesgue, 185 
line: 

in a plane, 186-198 
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Integral (Coni.): 
line (Conl<): 

in space, 210-214 
Maelaurin's integral test for infinite 

series, 243 
multiple (see Double integral, Triple 

integral) 
change of variable in, 204 

proper: 
function defined by (see Function) 
properties of, 291-294 

Riemann (see Riemann integral) 
Stieltjes (see Stieltjes integral) 
surface, 186, 199-204 
triple (see Triple integral) 

Integrals, definite, evaluation of, 313-315 
Integration: 

by parts, 134 
change in order of, 165-167, 297 
of a function defined by an improper 

integral, 297 
of a function defined by a proper 

integral, 159, 102, 165, 166 
of infinite series, 257 

Integrator function, 126 
Invariants, 68-70 

J 

Jacobian, 22, 38, 206, 208, 209 
Jordan curves, 184, 188, 187 
Just scale, 349 

L 

Lagrange identity, 51, 108 
Ijagrange remainder, 35 
Ijagrange’s multipliers, 113 
Lagueire polynomial, L,(x), 384, 385, 399 
Lamina: 

attraction of, on a unit particle, 174 
center of gravity of, 168 
moment of inertia of, 144 

Laplace's method, 21 
Laplace-Stidtjes transform, 397 
Laplace transform, 365-423 

bilateral, 395, 398 
definition of, 314, 367 
inversion formula for, 390 
operational properties of, 376 
unilateral, 395 

replace transforms, table of, 399 
Laplacian, (v|v), 65 
Law of the mean, 8, 72, 216 

generalized, 218 
Least square approximation, 354, 356 
Least squares, method of, 108 
Least upper bound, 149 
Lebesgue, H>, 334 
Lebesgue integral, 185 

Leibnizs rule, 409 
Leibniz's theorem on alternating series 

245, 247, 248, 276 
L* Hospital's rule, 218, 221, 225, 227 
Limit inferior and superior: 

definition of, 233 
properties of, 234 

Limit point: 
of a point set, 10 
of a sequence, 233 

Limit tests: 
for convergence and divergence of im¬ 

proper integrals, 273, 281-283, 285 
for convergence and divergence of 

infinite series, 249, 250 
Linear differential equations, 404-415 

homogeneo us, 408—412 
non homogen ecus, 412—415 

Line integral (see Integral) 
Logical symbols, definition of, 5 
Loxodrome, 94 

M 

Maclaurin series, 249, 355, 359, 366, 418 
Maclaurin's integral test, 249 
Maes: 

of a material curve (wire), 141 
of a solid body, 178 

Maximum and minimum: 
absolute, definition of, 101 
of a continuous function, 147 
of fund ions of a single variable, 98-100 
of functions of several variables, 98, 

101-107, 111-148 
relative, definition of, 101 

Mean, law of the, 8, 72, 210, 218 
Mean-value theorem: 

first, for Riemnnn integrals, 34 
first, for Stieltjes integrals, 137 
for functions of two variables, 11 
second, for lliemann integrals, 138 
second, for Stieltjes integrals, 138 

Mercator map, 94, 96 
Moment of inertia, 126, 142, 170, 178 
Multiple integral (see Integral) 

N 

Newton's law, 345 
Nonhomogeneous linear differential equa¬ 

tion, 412-415 
Normal line to a surface, 87 
Normal plane to a space curve, 74, 78 
Norm of a subdivision, 72, 127, 154 

O 

Open square, 40 
Orthogonal functions, 325 
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Oscillating integrand. 276, 282 
Osculating plane, 76, 78, 124 
Osgood, H\ P,t 184, 193 
Overtone, 349 

P 

mPt definition of class P, 329 
Pappus, theorem of, 209 
FarscvaPs theorem, 354, 357, 359 
Partial derivatives, definitions of, 1, 11 
Partial differential equations, 420 
Partial differentiation, 1-49 
Partial summation, 135 
Plane: 

osculating, 76, 78, 124 
rectifying, 78 
tangent, to a surface, SS 

Plane curves, family of, 118 
Plucked string, 422 
Point: 

of inflection of a curve, 100 
regular, on a surface, 63 
saddle, 106 
singular, on a surface, 63, 74 

Point set: 
boundary of, 10 
closed, 40 
interior point of, 10 
open, 10 

Polar coordinates for double integrals, 
162, 166 

Polar developable surface, 124 
Polynomial, homogeneous, 3 
Power series, convergence of, 369 
Power scries transform, 417 
Probability integral, 306 
Proper integral: 

function defined by (see Function) 
properties of, 291-294 

Q 

Quadratic form: 
in three variables, 310 
negative definite, positive definite, 

positive eemidefinito, 110 

R 

Ratio test for infinite series, 242 
Rectifiable curve, 72 
Rectifying plane, 78 
Ite fine meat: 

of a subdivision of an interval, 151 
of a subdivision of a region, 183 

Region: 
area of a. 184, 593 
closed, 10 

Region (Coni.): 
definition of a, 30 
diameter of a, 154 
in cylindrical coordinates, 179 
in polar coordinates, 162 
in rectangular coordinates, 153, 176 
in spherical coordinates, 180 
multiply connected, 197 
regular, 187 
simply connected, 154, 195, 213 
solid, 213 
subdivision of a, 154 

Regularity of sum inability, 264 
Remainder; 

Cauchy, 35 
Lagrange, 35 
Taylor, 34 

Resultant: 
bilateral, 396 
convolution, 380 
definition of, 380 
faltung, 380 

Rhumb line, 94 
Riemann integral, 126, 132, 135, 137, 

138, 147, i68, 185, 186, 188, 199 
RiemawirLcheegue theorem, 334 
Riemann*s theorem, 338, 339 
Kollo's theorem, 7, 45 

8 

Saddle-point, 106 
SckwarZf //. A., 174 
Second fundamental form of a surface, 01 
Second mean-value theorem for Riemann 

integrals, 138 
Second mean-value theorem for Stieltjes 

integrals, 138 
Sequence: 

bounded, 233 
determining, 417 
limit point of a, 233 

Series (see also Infinite aeries): 
Dirichlet, 366, 369, 397 
Fourier, 324- 364 
Maclaurin, 249, 355, 359, 366, 418 
power, 369 
Taylor's, 34, L36, 260, 366 
trigonometric, 324, 359 

Simply connected region, 164, 195, 213 
Sine integral, SI(x)t 383, 385, 400, 403 
Spherical coordinates for triple integrals, 

180 
Stieltjes integral, 326-152, 188 

definition of, 127 
properties of, 131 

Stieltjes transform, 39S 
Stirling's formula, 317, 319, 320T 391 
Stoke's theorem, 210-215 
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Subdivision: 
norm of a, 72, 127, 154 
of an interval, 72, 127, 151 
of a region, 154, 183 
refinement of, 151, 183 

Subregion, 154 
Summability: 

Abel, 265“ 301 
GesAro, 262, 265, 300, 351 
H6lder, 265 
of Fourier series, 351-353 
of improper integrals, 300-302 
of infinite series, 261-265 
regular, 264 

Summation processes of infinite series (sec 
Summability) 

Superior limit, 233 
Surface: 

area oF, 172, 173 
integral, 186, 190-204 

Surfaces: 
developable, 123, 124 
envelope of a family of, 122 

Symbols, definition of logical, 5 

T 

Tangent line to a space curve, 74 
Tangent plane to a surface, 88 
Taylor's formula with remainder, 34, 228, 

294 
Taylor's series, 34, 186, 260, 366 
Torsion, SO 
Torus, 62 
Transform: 

Fourier, 362 
Fourier cosine, 362 
Fourier sine, 362 
Laplace (see Laplace transform) 
power scries, 417 
Stieltjes, 398 

Transformation, 23 
inverse of a, 23, 38 

Trigonometric approximation, 354 
Trigonometric series, 324, 359 
Trihedral at a point, 78 
Triple integral ; 

definition of, 176 
iteration of; 

in cylindrical coordinates, 180 
in spherical coordinates, ISO 

Twisted cubic, 58 
Two-dimensional interval, 10 

V 

Uniform continuity: 
for functions of a single variable, 147 
for functions of two variables, 183 , 

Uniform convergence: 
of improper integrals, 2SS-29G, 296-299 
of infinite series, 252-255 

V 

ValUe Poussin, de la, 186, 208 
Variable, dependent and independent, 1, 

25-28 
Vector, 50-71 

binormal, 78 
definition of, 50 
normal, 87 
principal normal, 78 
symbolic, V, 65 
tangent, 78 

Vector form: 
of Green's theorem, 214 
of Stokc’s theorem, 214 

Vectors: 
algebra of, 51 
inner or scalar product of, 51, 69 
outer or vector product of, 51, 70 

Vibrating string, 343, 420 
differential equation of, 344 

Volume given by a double integral, 157, 
158 

W 

Wallis's product, 311 
Weierslrass form of Bonnet's theorem, 

138 
Weierstrass Mutest for uniform con¬ 

vergence: 
of improper integrals, 2S9, 362, 375 
of infinite series, 254 

Weierstmss theorem on polynomial ap~ 
proximal ion, 355 

Work given by a line integral, 189 

Z 

Zero of order ft, 76 




